Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Index=== For a linear operator with finite-dimensional kernel and co-kernel, one may define ''index'' as: <math display="block">\operatorname{ind}(f) := \dim(\ker(f)) - \dim(\operatorname{coker}(f)),</math> namely the degrees of freedom minus the number of constraints. For a transformation between finite-dimensional vector spaces, this is just the difference dim(''V'') − dim(''W''), by rank–nullity. This gives an indication of how many solutions or how many constraints one has: if mapping from a larger space to a smaller one, the map may be onto, and thus will have degrees of freedom even without constraints. Conversely, if mapping from a smaller space to a larger one, the map cannot be onto, and thus one will have constraints even without degrees of freedom. The index of an operator is precisely the [[Euler characteristic]] of the 2-term complex 0 → ''V'' → ''W'' → 0. In [[operator theory]], the index of [[Fredholm operator]]s is an object of study, with a major result being the [[Atiyah–Singer index theorem]].<ref>{{SpringerEOM|title=Index theory|id=Index_theory&oldid=23864|first=Victor|last=Nistor}}: "The main question in index theory is to provide index formulas for classes of Fredholm operators ... Index theory has become a subject on its own only after M. F. Atiyah and I. Singer published their index theorems"</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)