Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Loop quantum gravity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hamiltonian constraint of LQG === {{main| Hamiltonian constraint of LQG}} In the long history of canonical quantum gravity formulating the Hamiltonian constraint as a quantum operator ([[Wheeler–DeWitt equation]]) in a mathematically rigorous manner has been a formidable problem. It was in the loop representation that a mathematically well defined Hamiltonian constraint was finally formulated in 1996.{{sfn|Thiemann|1996|pp=257–264}} We leave more details of its construction to the article [[Hamiltonian constraint of LQG]]. This together with the quantum versions of the Gauss law and spatial diffeomorphism constrains written in the loop representation are the central equations of LQG (modern canonical quantum General relativity). Finding the states that are annihilated by these constraints (the physical states), and finding the corresponding physical inner product, and observables is the main goal of the technical side of LQG. An important aspect of the Hamiltonian operator is that it only acts at vertices (a consequence of this is that Thiemann's Hamiltonian operator, like Ashtekar's operator, annihilates non-intersecting loops except now it is not just formal and has rigorous mathematical meaning). More precisely, its action is non-zero on at least vertices of valence three and greater and results in a linear combination of new spin networks where the original graph has been modified by the addition of lines at each vertex together and a change in the labels of the adjacent links of the vertex.{{Citation needed|date=July 2021}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)