Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetic vector potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Frequency domain ==== The preceding time domain equations can be expressed in the frequency domain.<ref name="Balanis_Ant">{{Citation |last=Balanis |first= Constantine A. |year= 2005 |title= Antenna Theory |edition=third |publisher= John Wiley |isbn= 047166782X |author-link=Constantine A. Balanis}}</ref>{{rp|139}} * Lorenz gauge <math>\nabla \cdot \mathbf{A} + \frac{j \omega}{c^2} \phi= 0 \qquad </math> or <math>\qquad \phi = \frac {j \omega}{k^2} \nabla \cdot \mathbf{A} </math> * Solutions <math> \mathbf{A}\!\left(\mathbf{r}, \omega \right) = \frac{\mu_0}{\ 4\pi\ } \int_\Omega \frac{ \mathbf{J}\left(\mathbf{r}' , \omega \right) }R\ e^{-jkR} d^3 \mathbf{r}' \qquad \phi\!\left(\mathbf{r}, \omega \right) = \frac{1}{4\pi\epsilon_0} \int_\Omega \frac{ \rho \left(\mathbf{r}', \omega \right) } R \ e^{-jkR} d^3 \mathbf{r}'</math> * Wave equations <math> \nabla^2 \phi + k^2 \phi = - \frac{\rho}{\epsilon_0} \qquad \nabla^2 \mathbf{A} + k^2 \mathbf{A} = - \mu_0\ \mathbf{J} . </math> * Electromagnetic field equations <math>\mathbf{B} = \nabla \times \mathbf{A}\ \qquad \mathbf{E} = -\nabla \phi - j \omega \mathbf{A} = - j \omega \mathbf{A} -j \frac {\omega}{k^2} \nabla ( \nabla \cdot \mathbf{A} )</math> where : <math> \phi </math> and <math> \rho </math> are scalar [[phasors]]. : <math> \mathbf{A}, \mathbf{B}, \mathbf{E}, </math> and <math> \mathbf{J} </math> are vector [[phasors]]. : <math> k = \frac \omega c </math> There are a few notable things about <math>\mathbf{A}</math> and <math>\phi</math> calculated in this way: * The [[Lorenz gauge condition]] is satisfied: <math>\textstyle \phi = -\frac {c^2}{j \omega}\nabla \cdot \mathbf{A}. </math> This implies that the frequency domain electric potential, <math>\phi</math>, can be computed entirely from the current density distribution, <math>\mathbf{J}</math>. * The position of <math>\mathbf{r},</math> the point at which values for <math>\phi</math> and <math>\mathbf{A}</math> are found, only enters the equation as part of the scalar distance from <math>\mathbf{r}'</math> to <math>\ \mathbf{r}.</math> The direction from <math>\mathbf{r}'</math> to <math>\mathbf{r}</math> does not enter into the equation. The only thing that matters about a source point is how far away it is. * The integrand uses the [[phase shift]] term <math> e^{-jkR} </math> which plays a role equivalent to ''[[retarded time]]''. This reflects the fact that changes in the sources propagate at the speed of light; propagation delay in the time domain is equivalent to a phase shift in the frequency domain. * The equation for <math>\mathbf{A}</math> is a vector equation. In Cartesian coordinates, the equation separates into three scalar equations:<ref name=KrausE>{{harvp|Kraus|1984|p=189}}</ref> <math display="block">\begin{align} \mathbf{A}_x\!\left(\mathbf{r}, \omega \right) &= \frac{\mu_0}{4\pi} \int_\Omega \frac{ \mathbf{J}_x \left(\mathbf{r}' , \omega \right) }R\ e^{-jkR} \ d^3\mathbf{r}', \qquad \mathbf{A}_y\!\left(\mathbf{r}, \omega \right) &= \frac{\mu_0}{4\pi} \int_\Omega \frac{ \mathbf{J}_y \left(\mathbf{r}' , \omega \right) }R\ e^{-jkR} \ d^3\mathbf{r}', \qquad \mathbf{A}_z\!\left(\mathbf{r}, \omega \right) &= \frac{\mu_0}{4\pi} \int_\Omega \frac{ \mathbf{J}_z \left(\mathbf{r}' , \omega \right) }R\ e^{-jkR} \ d^3\mathbf{r}' \end{align}</math> In this form it is apparent that the component of <math>\mathbf{A}</math> in a given direction depends only on the components of <math>\ \mathbf{J}\ </math> that are in the same direction. If the current is carried in a straight wire, <math>\mathbf{A}</math> points in the same direction as the wire.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)