Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mapping class group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Symmetry group of knot and links === If ''K'' β '''S'''<sup>3</sup> is a [[knot (mathematics)|knot]] or a [[link (knot theory)|link]], the '''symmetry group of the knot (resp. link)''' is defined to be the mapping class group of the pair ('''S'''<sup>3</sup>, ''K''). The symmetry group of a [[hyperbolic knot]] is known to be [[dihedral group|dihedral]] or [[cyclic group|cyclic]]; moreover every dihedral and cyclic group can be realized as symmetry groups of knots. The symmetry group of a [[torus knot]] is known to be of order two '''Z'''<sub>2</sub>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)