Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mathematical proof
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Closed chain inference === {{Main|Closed chain inference}} A closed chain inference shows that a collection of statements are pairwise equivalent. In order to prove that the statements <math>\varphi_1,\ldots,\varphi_n</math> are each pairwise equivalent, proofs are given for the implications <math>\varphi_1\Rightarrow\varphi_2</math>, <math>\varphi_2\Rightarrow\varphi_3</math>, <math>\dots</math>, <math>\varphi_{n-1}\Rightarrow\varphi_n</math> and <math>\varphi_{n}\Rightarrow\varphi_1</math>.<ref>{{Cite book |last1=Plaue |first1=Matthias |url=https://books.google.com/books?id=-WCHDwAAQBAJ |title=Mathematik für das Bachelorstudium I: Grundlagen und Grundzüge der linearen Algebra und Analysis |last2=Scherfner |first2=Mike |date=2019-02-11 |publisher=Springer-Verlag |isbn=978-3-662-58352-4 |pages=26 |language=de |trans-title=Mathematics for the Bachelor's degree I: Fundamentals and basics of linear algebra and analysis}}</ref><ref>{{Cite book |last1=Struckmann |first1=Werner |url=https://books.google.com/books?id=1epNDQAAQBAJ |title=Mathematik für Informatiker: Grundlagen und Anwendungen |last2=Wätjen |first2=Dietmar |date=2016-10-20 |publisher=Springer-Verlag |isbn=978-3-662-49870-5 |pages=28 |language=de |trans-title=Mathematics for Computer Scientists: Fundamentals and Applications}}</ref> The pairwise equivalence of the statements then results from the [[Transitive relation|transitivity]] of the [[material conditional]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)