Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== The exponential map == The exponential of a matrix is always an [[invertible matrix]]. The inverse matrix of {{math|''e''<sup>''X''</sup>}} is given by {{math|''e''<sup>−''X''</sup>}}. This is analogous to the fact that the exponential of a complex number is always nonzero. The matrix exponential then gives us a map <math display="block">\exp \colon M_n(\Complex) \to \mathrm{GL}(n, \Complex)</math> from the space of all ''n'' × ''n'' matrices to the [[general linear group]] of degree {{mvar|n}}, i.e. the [[group (mathematics)|group]] of all ''n'' × ''n'' invertible matrices. In fact, this map is [[surjective]] which means that every invertible matrix can be written as the exponential of some other matrix<ref>{{harvnb|Hall|2015}} Exercises 2.9 and 2.10</ref> (for this, it is essential to consider the field '''C''' of complex numbers and not '''R'''). For any two matrices {{mvar|X}} and {{mvar|Y}}, <math display="block">\left\| e^{X+Y} - e^X\right\| \le \|Y\| e^{\|X\|} e^{\|Y\|}, </math> where {{math|‖ · ‖}} denotes an arbitrary [[matrix norm]]. It follows that the exponential map is [[continuity (mathematics)|continuous]] and [[Lipschitz continuous]] on [[compact set|compact]] subsets of {{math|''M''<sub>''n''</sub>('''C''')}}. The map <math display="block">t \mapsto e^{tX}, \qquad t \in \R</math> defines a [[Smooth function#Smoothness|smooth]] curve in the general linear group which passes through the identity element at {{math|1=''t'' = 0}}. In fact, this gives a [[one-parameter subgroup]] of the general linear group since <math display="block">e^{tX}e^{sX} = e^{(t + s)X}.</math> The derivative of this curve (or [[tangent vector]]) at a point ''t'' is given by {{NumBlk||<math display="block">\frac{d}{dt}e^{tX} = Xe^{tX} = e^{tX}X.</math>|{{EquationRef|1}}}} The derivative at {{math|1=''t'' = 0}} is just the matrix ''X'', which is to say that ''X'' generates this one-parameter subgroup. More generally,<ref>{{cite journal|doi=10.1063/1.1705306 | author = R. M. Wilcox | title=Exponential Operators and Parameter Differentiation in Quantum Physics | journal=Journal of Mathematical Physics | volume=8 | pages=962–982 | year=1967|issue=4| bibcode = 1967JMP.....8..962W }}</ref> for a generic {{mvar|t}}-dependent exponent, {{math|''X''(''t'')}}, {{Equation box 1 |indent = |equation = <math>\frac{d}{dt}e^{X(t)} = \int_0^1 e^{\alpha X(t)} \frac{dX(t)}{dt} e^{(1 - \alpha) X(t)}\,d\alpha ~. </math> |cellpadding= |border |border colour = #0073CF |bgcolor=#000000 }} Taking the above expression {{math|''e''<sup>''X''(''t'')</sup>}} outside the integral sign and expanding the integrand with the help of the [[Baker–Campbell–Hausdorff formula|Hadamard lemma]] one can obtain the following useful expression for the derivative of the matrix exponent,<ref>{{harvnb|Hall|2015}} Theorem 5.4</ref> <math display="block">e^{-X(t)}\left(\frac{d}{dt}e^{X(t)}\right) = \frac{d}{dt}X(t) - \frac{1}{2!} \left[X(t), \frac{d}{dt}X(t)\right] + \frac{1}{3!} \left[X(t), \left[X(t), \frac{d}{dt}X(t)\right]\right] - \cdots </math> The coefficients in the expression above are different from what appears in the exponential. For a closed form, see [[derivative of the exponential map]]. === Directional derivatives when restricted to Hermitian matrices === Let <math>X</math> be a <math>n \times n</math> Hermitian matrix with distinct eigenvalues. Let <math>X = E \textrm{diag}(\Lambda) E^*</math> be its eigen-decomposition where <math>E</math> is a unitary matrix whose columns are the eigenvectors of <math>X</math>, <math>E^*</math> is its conjugate transpose, and <math>\Lambda = \left(\lambda_1, \ldots, \lambda_n\right)</math> the vector of corresponding eigenvalues. Then, for any <math>n \times n</math> Hermitian matrix <math>V</math>, the [[directional derivative]] of <math>\exp: X \to e^X</math> at <math>X</math> in the direction <math>V</math> is <ref name="lewis">{{cite journal | first1=Adrian S. | last1=Lewis | first2=Hristo S. | last2=Sendov | title=Twice differentiable spectral functions | journal=SIAM Journal on Matrix Analysis and Applications | volume=23 | issue=2 | pages=368–386 | date=2001 | doi=10.1137/S089547980036838X | url=https://people.orie.cornell.edu/aslewis/publications/01-twice.pdf }} See Theorem 3.3.</ref> <ref name="deledalle">{{cite journal | first1=Charles-Alban | last1=Deledalle | first2=Loïc | last2=Denis | first3=Florence | last3=Tupin | title=Speckle reduction in matrix-log domain for synthetic aperture radar imaging | journal=Journal of Mathematical Imaging and Vision | date=2022 | volume=64 | issue=3 | pages=298–320 | doi=10.1007/s10851-022-01067-1 | doi-access=free | bibcode=2022JMIV...64..298D }} See Propositions 1 and 2. </ref> <math display="block"> D \exp (X) [V] \triangleq \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\displaystyle e^{X + \epsilon V} - e^{X} \right) = E(G \odot \bar{V}) E^* </math> where <math>\bar{V} = E^* V E</math>, the operator <math>\odot</math> denotes the Hadamard product, and, for all <math>1 \leq i, j \leq n</math>, the matrix <math>G</math> is defined as <math display="block"> G_{i, j} = \left\{\begin{align} & \frac{e^{\lambda_i} - e^{\lambda_j}}{\lambda_i - \lambda_j} & \text{ if } i \neq j,\\ & e^{\lambda_i} & \text{ otherwise}.\\ \end{align}\right. </math> In addition, for any <math>n \times n</math> Hermitian matrix <math>U</math>, the second directional derivative in directions <math>U</math> and <math>V</math> is<ref name="deledalle"/> <math display="block"> D^2 \exp (X) [U, V] \triangleq \lim_{\epsilon_u \to 0} \lim_{\epsilon_v \to 0} \frac{1}{4 \epsilon_u \epsilon_v} \left(\displaystyle e^{X + \epsilon_u U + \epsilon_v V} - e^{X - \epsilon_u U + \epsilon_v V} - e^{X + \epsilon_u U - \epsilon_v V} + e^{X - \epsilon_u U - \epsilon_v V} \right) = E F(U, V) E^* </math> where the matrix-valued function <math>F</math> is defined, for all <math>1 \leq i, j \leq n</math>, as <math display="block"> F(U, V)_{i,j} = \sum_{k=1}^n \phi_{i,j,k}(\bar{U}_{ik}\bar{V}_{jk}^* + \bar{V}_{ik}\bar{U}_{jk}^*) </math> with <math display="block"> \phi_{i,j,k} = \left\{\begin{align} & \frac{G_{ik} - G_{jk}}{\lambda_i - \lambda_j} & \text{ if } i \ne j,\\ & \frac{G_{ii} - G_{ik}}{\lambda_i - \lambda_k} & \text{ if } i = j \text{ and } k \ne i,\\ & \frac{G_{ii}}{2} & \text{ if } i = j = k.\\ \end{align}\right. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)