Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maximum likelihood estimation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Application of maximum-likelihood estimation in Bayes decision theory ==== In many practical applications in [[machine learning]], maximum-likelihood estimation is used as the model for parameter estimation. The Bayesian Decision theory is about designing a classifier that minimizes total expected risk, especially, when the costs (the loss function) associated with different decisions are equal, the classifier is minimizing the error over the whole distribution.<ref>{{cite web |last=Christensen |first=Henrikt I. |title=Pattern Recognition |publisher=Georgia Tech |series=Bayesian Decision Theory - CS 7616 |url=https://www.cc.gatech.edu/~hic/CS7616/pdf/lecture2.pdf |type=lecture}}</ref> Thus, the Bayes Decision Rule is stated as :"decide <math>\;w_1\;</math> if <math>~\operatorname{\mathbb P}(w_1|x) \; > \; \operatorname{\mathbb P}(w_2|x)~;~</math> otherwise decide <math>\;w_2\;</math>" where <math>\;w_1\,, w_2\;</math> are predictions of different classes. From a perspective of minimizing error, it can also be stated as <math display="block">w = \underset{ w }{\operatorname{arg\;max}} \; \int_{-\infty}^\infty \operatorname{\mathbb P}(\text{ error}\mid x)\operatorname{\mathbb P}(x)\,\operatorname{d}x~</math> where <math display="block">\operatorname{\mathbb P}(\text{ error}\mid x) = \operatorname{\mathbb P}(w_1\mid x)~</math> if we decide <math>\;w_2\;</math> and <math>\;\operatorname{\mathbb P}(\text{ error}\mid x) = \operatorname{\mathbb P}(w_2\mid x)\;</math> if we decide <math>\;w_1\;.</math> By applying [[Bayes' theorem]] <math display="block">\operatorname{\mathbb P}(w_i \mid x) = \frac{\operatorname{\mathbb P}(x \mid w_i) \operatorname{\mathbb P}(w_i)}{\operatorname{\mathbb P}(x)}</math>, and if we further assume the zero-or-one loss function, which is a same loss for all errors, the Bayes Decision rule can be reformulated as: <math display="block">h_\text{Bayes} = \underset{ w }{\operatorname{arg\;max}} \, \bigl[\, \operatorname{\mathbb P}(x\mid w)\,\operatorname{\mathbb P}(w) \,\bigr]\;,</math> where <math>h_\text{Bayes}</math> is the prediction and <math>\;\operatorname{\mathbb P}(w)\;</math> is the [[prior probability]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)