Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Microcanonical ensemble
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Ideal gas === The fundamental quantity in the microcanonical ensemble is <math>W(E, V, N)</math>, which is equal to the phase space volume compatible with given <math>(E, V, N)</math>. From <math>W</math>, all thermodynamic quantities can be calculated. For an [[ideal gas]], the energy is independent of the particle positions, which therefore contribute a factor of <math>V^N</math> to <math>W</math>. The momenta, by contrast, are constrained to a <math>3N</math>-dimensional [[n-sphere|(hyper-)spherical]] shell of radius <math>\sqrt{2mE}</math>; their contribution is equal to the surface volume of this shell. The resulting expression for <math>W</math> is:<ref name="Kardar2007">{{cite book|title=Statistical Physics of Particles|first=Mehran|last=Kardar|author-link=Mehran Kardar|publisher=Cambridge University Press|year=2007|isbn=978-0-521-87342-0|pages=105–109}}</ref> <math display="block"> W = \frac{V^N}{N!} \frac{2\pi^{3N/2}}{\Gamma(3N/2)}\left(2mE\right)^{(3N-1)/2} </math> where <math> \Gamma(\cdot) </math> is the [[gamma function]], and the factor <math>N!</math> has been included to account for the [[Identical particles|indistinguishability of particles]] (see [[Gibbs paradox]]). In the large <math>N</math> limit, the Boltzmann entropy <math>S = k_{\mathrm{B}} \log W</math> is <math display="block"> S = k_\text{B} N \log \left[ \frac VN \left(\frac{4\pi m}{3}\frac EN\right)^{3/2}\right] + \frac{5}{2} k_\text{B} N + O\left( \log N \right) </math> This is also known as the [[Sackur–Tetrode equation]]. The temperature is given by <math display="block"> \frac{1}{T} \equiv \frac{\partial S}{\partial E} = \frac{3}{2} \frac{N k_\text{B}}{E} </math> which agrees with analogous result from the [[kinetic theory of gases]]. Calculating the pressure gives the [[ideal gas law]]: <math display="block"> \frac{p}{T} \equiv \frac{\partial S}{\partial V} = \frac{N k_\text{B}}{V} \quad \rightarrow \quad pV = N k_\text{B} T </math> Finally, the [[chemical potential]] <math>\mu</math> is <math display="block"> \mu \equiv -T \frac{\partial S}{\partial N} = -k_\text{B} T \log \left[\frac{V}{N} \, \left(\frac{4 \pi m E}{3N} \right)^{3/2} \right] </math> === Ideal gas in a uniform gravitational field === The microcanonical phase volume can also be calculated explicitly for an ideal gas in a uniform [[gravitational field]].<ref name="RomanWhite1995">{{cite journal|last1=Roman|first1=F L|last2=White|first2=J A|last3=Velasco|first3=S|title=Microcanonical single-particle distributions for an ideal gas in a gravitational field|journal=European Journal of Physics|volume=16|issue=2|year=1995|pages=83–90|issn=0143-0807|doi=10.1088/0143-0807/16/2/008|bibcode=1995EJPh...16...83R |s2cid = 250840083 }}</ref> The results are stated below for a 3-dimensional ideal gas of <math>N</math> particles, each with mass <math>m</math>, confined in a thermally isolated container that is infinitely long in the ''z''-direction and has constant cross-sectional area <math>A</math>. The gravitational field is assumed to act in the minus ''z'' direction with strength <math>g</math>. The phase volume <math>W(E, N)</math> is <math display="block"> W(E, N) = \frac{(2 \pi)^{3N/2} A^N m^{N/2}}{g^N \, \Gamma{\left(\frac{5N}{2}\right)}} E^{\frac{5N}{2}-1} </math> where <math>E</math> is the total energy, kinetic plus gravitational. The gas density <math>\rho(z)</math> as a function of height <math>z</math> can be obtained by integrating over the phase volume coordinates. The result is: <math display="block"> \rho(z) = \left(\frac{5N}{2} - 1 \right) \frac{mg}{E}\left(1 - \frac{mgz}{E} \right)^{\frac{5N}{2}-2} </math> Similarly, the distribution of the velocity magnitude <math>\left|\mathbf{v}\right|</math> (averaged over all heights) is <math display="block"> f(|\mathbf{v}|) = \frac{\Gamma{\left(\frac{5N}{2}\right)}}{\Gamma{\left(\frac{3}{2}\right)} \, \Gamma{\left(\frac{5N}{2} - \frac{3}{2}\right)}} \cdot \frac{m^{3/2} {\left|\mathbf{v}\right|}^2}{2^{1/2} E^{3/2}} \cdot \left(1 - \frac{m {\left|\mathbf{v}\right|}^2}{2 E} \right)^{{5(N-1)}/{2}} </math> The analogues of these equations in the canonical ensemble are the [[barometric formula]] and the [[Maxwell–Boltzmann distribution]], respectively. In the limit <math>N \to \infty</math>, the microcanonical and canonical expressions coincide; however, they differ for finite <math>N</math>. In particular, in the microcanonical ensemble, the positions and velocities are not statistically independent. As a result, the kinetic temperature, defined as the average kinetic energy in a given volume <math>A \, dz</math>, is nonuniform throughout the container: <math display="block"> T_{\text{kinetic}} = \frac{3 E}{5 N - 2} \left(1 - \frac{mgz}{E} \right) </math> By contrast, the temperature is uniform in the canonical ensemble, for any <math>N</math>.<ref name="VelascoRomán1996">{{cite journal|last1=Velasco|first1=S|last2=Román|first2=F L|last3=White|first3=J A|title=On a paradox concerning the temperature distribution of an ideal gas in a gravitational field|journal=European Journal of Physics|volume=17|issue=1|year=1996|pages=43–44|issn=0143-0807|doi=10.1088/0143-0807/17/1/008|s2cid=250885860}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)