Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Moment-generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to other functions== Related to the moment-generating function are a number of other [[integral transform|transforms]] that are common in probability theory: ;[[Characteristic function (probability theory)|Characteristic function]]: The [[characteristic function (probability theory)|characteristic function]] <math>\varphi_X(t)</math> is related to the moment-generating function via <math>\varphi_X(t) = M_{iX}(t) = M_X(it):</math> the characteristic function is the moment-generating function of ''iX'' or the moment generating function of ''X'' evaluated on the imaginary axis. This function can also be viewed as the [[Fourier transform]] of the [[probability density function]], which can therefore be deduced from it by inverse Fourier transform. ;[[Cumulant-generating function]]: The [[cumulant-generating function]] is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of the [[Characteristic function (probability theory)|characteristic function]], while others call this latter the ''second'' cumulant-generating function. ;[[Probability-generating function]]: The [[probability-generating function]] is defined as <math>G(z) = \operatorname{E}\left[z^X\right].</math> This immediately implies that <math>G(e^t) = \operatorname{E}\left[e^{tX}\right] = M_X(t).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)