Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiset
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== Different generalizations of multisets have been introduced, studied and applied to solving problems. * Signed multisets (in which multiplicity of an element can be any [[integer]])<ref name="Blizard1990">{{cite journal|last=Blizard|first=Wayne D.|year=1990|title=Negative Membership|journal=Notre Dame Journal of Formal Logic|volume=31|issue=3|pages=346β368|doi=10.1305/ndjfl/1093635499 |s2cid=42766971 |doi-access=free}}</ref> * Real-valued multisets (in which multiplicity of an element can be any [[real number]])<ref>{{cite journal| last=Blizard|first=Wayne D.|year=1989|title=Real-valued Multisets and Fuzzy Sets|journal=[[Fuzzy Sets and Systems]]|volume=33|issue=1 |pages=77β97|doi=10.1016/0165-0114(89)90218-2}}</ref> * Fuzzy multisets<ref name="Yager1986">{{cite journal|last=Yager|first=R. R.|year=1986|title=On the Theory of Bags|journal=International Journal of General Systems|volume=13|issue=1 |pages=23β37|doi=10.1080/03081078608934952}}</ref> * Rough multisets<ref name="Grzymala-Busse1987">{{cite book|last=Grzymala-Busse|first=J.|year=1987|chapter=Learning from examples based on rough multisets|title=Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems|location=Charlotte, North Carolina|pages=325β332}}</ref> * Hybrid sets<ref name="Loeb1992">{{cite journal|last=Loeb|first=D.|year=1992|title=Sets with a negative numbers of elements|journal=[[Advances in Mathematics]]|volume=91|issue=1 |pages=64β74|doi=10.1016/0001-8708(92)90011-9|doi-access=free}}</ref> * Multisets whose multiplicity is any real-valued [[step function]]<ref name="Miyamoto2001">{{cite book|last=Miyamoto|first=S.|title=Multiset Processing |chapter=Fuzzy Multisets and Their Generalizations |year=2001|series=Lecture Notes in Computer Science |volume=2235|pages=225β235|publisher=Springer |location=Berlin, Heidelberg |doi=10.1007/3-540-45523-X_11 |isbn=978-3-540-43063-6 }}</ref> * Soft multisets<ref name="Alkhazaleh2011">{{cite journal|last1=Alkhazaleh|first1=S.|last2=Salleh|first2=A. R.|last3=Hassan|first3=N.|year=2011|title=Soft Multisets Theory|journal=Applied Mathematical Sciences|volume=5|issue=72|pages=3561β3573}}</ref> * Soft fuzzy multisets<ref name="Alkhazaleh2012">{{cite journal|last1=Alkhazaleh|first1=S.|last2=Salleh|first2=A. R.|year=2012|title=Fuzzy Soft Multiset Theory|journal=Abstract and Applied Analysis|volume=2012 |pages=1β20 |doi=10.1155/2012/350603 |doi-access=free }}</ref> * Named sets (unification of all generalizations of sets)<ref>{{cite book|last=Burgin|first=Mark|year=1990|chapter=Theory of Named Sets as a Foundational Basis for Mathematics|title=Structures in Mathematical Theories|publisher=San Sebastian|pages=417β420|chapter-url=http://www.blogg.org/blog-30140-date-2005-10-26.html}}</ref><ref>{{cite journal|last=Burgin|first=Mark|year=1992|title=On the concept of a multiset in cybernetics|journal=Cybernetics and System Analysis|volume=3|pages=165β167}}</ref><ref>{{cite arXiv|last=Burgin|first=Mark|year=2004|title=Unified Foundations of Mathematics|eprint=math/0403186}}</ref><ref>{{cite book|last=Burgin|first=Mark|year=2011|title=Theory of Named Sets|series=Mathematics Research Developments|publisher=Nova Science Pub Inc|isbn=978-1-61122-788-8}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)