Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural deduction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Gentzen-style inference rules === Let the propositional language <math>\mathcal{L}</math> be inductively defined as <math>\Phi ::= p_1, p_2, \dots \mid \bot \mid (\Phi \to \Phi) \mid (\Phi \land \Phi) \mid (\Phi \lor \Phi)</math>. Define negation as <math>\neg \Phi \, \overset{\text{def}}{=} \, (\Phi \to \bot)</math>. The following is a list of primitive inference rules for natural deduction in propositional logic{{sfn|Prawitz|1965|p=20}}{{sfn|Ayala-Rincón|de Moura|2017|pages=2,20}} {| class="wikitable" |+ Rules for propositional logic ! Introduction rules ! Elimination rules |- | <math>\begin{array}{c} \varphi \qquad \psi \\ \hline \varphi \land \psi \end{array} (\land_I)</math> | <math>\begin{array}{c} \varphi \land \psi \\ \hline \varphi \end{array} (\land_E)</math> |- | <math>\begin{array}{c} \varphi \\ \hline \varphi \lor \psi \end{array} (\lor_I)</math> | <math> \cfrac{ \varphi \lor \psi \quad \begin{matrix} [\varphi]^u \\ \vdots \\ \chi \end{matrix} \quad \begin{matrix} [\psi]^v \\ \vdots \\ \chi \end{matrix} }{\chi}\ \lor_{E^{u,v}} </math> |- | <math>\begin{array}{c} [\varphi]^u \\ \vdots \\ \psi \\ \hline \varphi \to \psi \end{array} (\to_I) \ u</math> | <math>\begin{array}{c} \varphi \qquad \varphi \to \psi \\ \hline \psi \end{array} (\to_E)</math> |- | |<math>\begin{array}{c} \bot \\ \hline \varphi \end{array} (\bot_E)</math> |- | |<ref name="RAA"/> <math>\begin{array}{c} (\varphi \to \bot ) \to \bot \\ \hline \varphi \end{array} (\neg\neg_E)</math> |} In this table the Greek letters <math>\varphi, \psi, \chi</math> are ''[[Propositional calculus#Constants and schemata|schemata]]'', which range over formulas rather than only over atomic propositions. The name of a rule is given to the right of its formula tree. For instance, the first introduction rule is named <math>\land_I</math>, which is short for "conjunction introduction". * '''[[Minimal logic]]''': the natural deduction rules are <math>ND_{MPC} = \{ \land_I, \land_E, \lor_I, \lor_E, \to_I, \to_E \}</math>. :Whithout the rules <math>\bot_E</math> and <math>\neg\neg_E</math> the system defines minimal logic (as discussed by [[Ingebrigt Johansson|Johansson]]).{{sfn|Johansson|1937}} * '''[[Intuitionistic logic]]''': the natural deduction rules are <math>ND_{IPC} = ND_{MPC} \cup \{ \bot_E \}</math>. :When the rule <math>\bot_E</math> ([[principle of explosion]]) is added to the rules for minimal logic, the system defines intuitionistic logic. :The statement <math>P \to \neg \neg P</math> is valid (already in minimal logic, see example 1 below), unlike the reverse implication which would entail the [[law of excluded middle]]. * '''[[Classical logic]]''': the natural deduction rules are <math>ND_{CPC} = ND_{IPC} \cup \{ \neg\neg_E \}</math>.{{refn|name="RAA"|Instead of <math>\neg\neg</math>E one can add '''[[reductio ad absurdum]]''' as a rule to obtain classical logic:{{sfn|Prawitz|1965|p=21}}{{sfn|Ayala-Rincón|de Moura|2017|pp=17-24}} :<math> \frac{\begin{array}{c} [\varphi \to \bot] \\ \vdots \\ \bot \end{array}}{\varphi}</math> (RAA)}} :When all listed natural deduction rules are admitted, the system defines classical logic.{{sfn|Prawitz|1965|p=21}}{{sfn|Ayala-Rincón|de Moura|2017|pp=17-24}}{{sfn|Tennant|1990|p=48}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)