Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newtonian dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to Lagrange equations== Mechanical systems with constraints are usually described by [[Lagrangian mechanics#Lagrange equations of the second kind|Lagrange equations]]: {{NumBlk|:|<math> \frac{dq^s}{dt}=w^s,\qquad\frac{d}{dt}\left(\frac{\partial T}{\partial w^s}\right)-\frac{\partial T}{\partial q^s}=Q_s,\qquad s=1,\,\ldots,\,n</math>,|{{EquationRef|16}}}} where <math>T=T(q^1,\ldots,q^n,w^1,\ldots,w^n)</math> is the kinetic energy the constrained dynamical system given by the formula ({{EquationNote|12}}). The quantities <math>Q_1,\,\ldots,\,Q_n</math> in ({{EquationNote|16}}) are the inner [[tensor#Tensor valence|covariant components]] of the tangent force vector <math>\mathbf F_\parallel</math> (see ({{EquationNote|13}}) and ({{EquationNote|14}})). They are produced from the inner [[tensor#Tensor valence|contravariant components]] <math>F^1,\,\ldots,\,F^n</math> of the vector <math>\mathbf F_\parallel</math> by means of the standard [[raising and lowering indices|index lowering procedure]] using the metric ({{EquationNote|11}}): {{NumBlk|:|<math> Q_s=\sum^n_{r=1}g_{sr}\,F^r,\qquad s=1,\,\ldots,\,n</math>,|{{EquationRef|17}}}} The equations ({{EquationNote|16}}) are equivalent to the equations ({{EquationNote|15}}). However, the metric ({{EquationNote|11}}) and other geometric features of the configuration manifold <math>\displaystyle M</math> are not explicit in ({{EquationNote|16}}). The metric ({{EquationNote|11}}) can be recovered from the kinetic energy <math>\displaystyle T</math> by means of the formula {{NumBlk|:|<math> g_{ij}=\frac{\partial^2T}{\partial w^i\,\partial w^j}</math>.|{{EquationRef|18}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)