Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Standard deviation and coverage ==== {{Further|Interval estimation|Coverage probability}} [[File:Standard deviation diagram.svg|thumb|350px|For the normal distribution, the values less than one standard deviation from the mean account for 68.27% of the set; while two standard deviations from the mean account for 95.45%; and three standard deviations account for 99.73%.]] About 68% of values drawn from a normal distribution are within one standard deviation ''Ο'' from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations.<ref name="www.mathsisfun.com" /> This fact is known as the [[68β95β99.7 rule|68β95β99.7 (empirical) rule]], or the ''3-sigma rule''. More precisely, the probability that a normal deviate lies in the range between <math display=inline>\mu-n\sigma</math> and <math display=inline>\mu+n\sigma</math> is given by <math display=block> F(\mu+n\sigma) - F(\mu-n\sigma) = \Phi(n)-\Phi(-n) = \operatorname{erf} \left(\frac{n}{\sqrt{2}}\right). </math> To 12 significant digits, the values for <math display=inline>n=1,2,\ldots , 6</math> are: {| class="wikitable" style="text-align:center;margin-left:24pt" |- ! {{tmath|n}} !! <math display=inline>p= F(\mu+n\sigma) - F(\mu-n\sigma)</math> !! <math display=inline>1-p</math>!! <math display=inline>\text{or }1\text{ in }(1-p)</math> !! [[OEIS]] |- |1 || {{val|0.682689492137}} || {{val|0.317310507863}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|3}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.15148718753}} |} || {{OEIS2C|A178647}} |- |2 || {{val|0.954499736104}} || {{val|0.045500263896}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|21}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.9778945080}} |} || {{OEIS2C|A110894}} |- |3 || {{val|0.997300203937}} || {{val|0.002699796063}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|370}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.398347345}} |} || {{OEIS2C|A270712}} |- |4 || {{val|0.999936657516}} || {{val|0.000063342484}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|15787}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.1927673}} |} |- |5 || {{val|0.999999426697}} || {{val|0.000000573303}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|1744277}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.89362}} |} |- |6 || {{val|0.999999998027}} || {{val|0.000000001973}} || {| cellpadding="0" cellspacing="0" style="width: 16em;" | style="text-align: right; width: 7em;" | {{val|506797345}} || style="text-align: left; width: 9em;" | {{#invoke:Gapnum|main|.897}} |} |} For large {{tmath|n}}, one can use the approximation <math display=inline>1 - p \approx \frac{e^{-n^2/2}}{n\sqrt{\pi/2}}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)