Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal mode
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==In seismology== Normal modes are generated in the Earth from long wavelength [[seismic waves]] from large earthquakes interfering to form standing waves. For an elastic, isotropic, homogeneous sphere, spheroidal, toroidal and radial (or breathing) modes arise. Spheroidal modes only involve P and SV waves (like [[Rayleigh waves]]) and depend on overtone number {{mvar|n}} and angular order {{mvar|l}} but have degeneracy of azimuthal order {{mvar|m}}. Increasing {{mvar|l}} concentrates fundamental branch closer to surface and at large {{mvar|l}} this tends to Rayleigh waves. Toroidal modes only involve SH waves (like [[Love waves]]) and do not exist in fluid outer core. Radial modes are just a subset of spheroidal modes with {{math|1=''l'' = 0}}. The degeneracy does not exist on Earth as it is broken by rotation, ellipticity and 3D heterogeneous velocity and density structure. It may be assumed that each mode can be isolated, the self-coupling approximation, or that many modes close in frequency [[resonate]], the cross-coupling approximation. Self-coupling will solely change the phase velocity and not the number of waves around a great circle, resulting in a stretching or shrinking of standing wave pattern. Modal cross-coupling occurs due to the rotation of the Earth, from aspherical elastic structure, or due to Earth's ellipticity and leads to a mixing of fundamental spheroidal and toroidal modes.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)