Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nuclear physics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Nuclear fusion=== In [[nuclear fusion]], two low-mass nuclei come into very close contact with each other so that the strong force fuses them. It requires a large amount of energy for the strong or [[nuclear force]]s to overcome the electrical repulsion between the nuclei in order to fuse them; therefore nuclear fusion can only take place at very high temperatures or high pressures. When nuclei fuse, a very large amount of energy is released and the combined nucleus assumes a lower energy level. The binding energy per nucleon increases with mass number up to [[nickel]]-62. [[Star]]s like the Sun are powered by the fusion of four protons into a helium nucleus, two [[positron]]s, and two [[neutrinos]]. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. A frontier in current research at various institutions, for example the [[Joint European Torus]] (JET) and [[ITER]], is the development of an economically viable method of using energy from a controlled fusion reaction. Nuclear fusion is the origin of the energy (including in the form of light and other electromagnetic radiation) produced by the core of all stars including our own Sun.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)