Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthogonal matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Canonical form=== More broadly, the effect of any orthogonal matrix separates into independent actions on orthogonal two-dimensional subspaces. That is, if {{mvar|Q}} is special orthogonal then one can always find an orthogonal matrix {{mvar|P}}, a (rotational) [[change of basis]], that brings {{mvar|Q}} into block diagonal form: <math display="block">P^\mathrm{T}QP = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{bmatrix}\ (n\text{ even}), \ P^\mathrm{T}QP = \begin{bmatrix} R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1 \end{bmatrix}\ (n\text{ odd}).</math> where the matrices {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} are {{nowrap|2 Γ 2}} rotation matrices, and with the remaining entries zero. Exceptionally, a rotation block may be diagonal, {{math|Β±''I''}}. Thus, negating one column if necessary, and noting that a {{nowrap|2 Γ 2}} reflection diagonalizes to a +1 and β1, any orthogonal matrix can be brought to the form <math display="block">P^\mathrm{T}QP = \begin{bmatrix} \begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\ 0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\ \end{bmatrix},</math> The matrices {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} give conjugate pairs of eigenvalues lying on the unit circle in the [[complex number|complex plane]]; so this decomposition confirms that all [[Eigenvalues and eigenvectors|eigenvalues]] have [[absolute value]] 1. If {{mvar|n}} is odd, there is at least one real eigenvalue, +1 or β1; for a {{nowrap|3 Γ 3}} rotation, the eigenvector associated with +1 is the rotation axis.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)