Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pascal's triangle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Overall patterns and properties === [[File:Sierpinski Pascal triangle.svg|thumb|A level-4 approximation to a [[Sierpiński triangle]] obtained by shading the first 32 rows of a Pascal triangle white if the binomial coefficient is even and black if it is odd.]] * The pattern obtained by coloring only the odd numbers in Pascal's triangle closely resembles the [[fractal]] known as the [[Sierpiński triangle]]. This resemblance becomes increasingly accurate as more rows are considered; in the limit, as the number of rows approaches infinity, the resulting pattern ''is'' the Sierpiński triangle, assuming a fixed perimeter. More generally, numbers could be colored differently according to whether or not they are multiples of 3, 4, etc.; this results in other similar patterns. :As the proportion of black numbers tends to zero with increasing ''n'', a corollary is that the proportion of odd binomial coefficients tends to zero as ''n'' tends to infinity.<ref>Ian Stewart, "How to Cut a Cake", Oxford University Press, page 180</ref> <div class="thumb tright" style="clear: right; text-align: center;"> <div class="thumbinner" style="width: 230px;"> {| cellpadding="0" cellspacing="0" style="line-height: 0; background: white; font-size: 88%; border: 1px #b0b0b0 solid; padding: 0; margin: auto" |- style="vertical-align: middle" | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess rll45.svg|26x26px|alt=a4 white rook|a4 white rook]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x1d45.svg|26x26px|alt=b4 one|b4 one]] | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x1l45.svg|26x26px|alt=c4 one|c4 one]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x1d45.svg|26x26px|alt=d4 one|d4 one]] |- style="vertical-align: middle" | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x1d45.svg|26x26px|alt=a3 one|a3 one]] | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x2l45.svg|26x26px|alt=b3 two|b3 two]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x3d45.svg|26x26px|alt=c3 three|c3 three]] | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x4l45.svg|26x26px|alt=d3 four|d3 four]] |- style="vertical-align: middle" | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x1l45.svg|26x26px|alt=a2 one|a2 one]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x3d45.svg|26x26px|alt=b2 three|b2 three]] | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x6l45.svg|26x26px|alt=c2 six|c2 six]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | {{resize|150%|10}} |- style="vertical-align: middle" | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | [[File:Chess x1d45.svg|26x26px|alt=a1 one|a1 one]] | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | [[File:Chess x4l45.svg|26x26px|alt=b1 four|b1 four]] | style="padding: 0; vertical-align: inherit; background-color: #d18b47;" | {{resize|150%|10}} | style="padding: 0; vertical-align: inherit; background-color: #ffce9e;" | {{resize|150%|20}} |} <div class="thumbcaption"> Pascal's triangle overlaid on a grid gives the number of distinct paths to each square, assuming only rightward and downward steps to an adjacent square are considered. </div></div></div> * In a triangular portion of a grid (as in the images below), the number of shortest grid paths from a given node to the top node of the triangle is the corresponding entry in Pascal's triangle. On a [[Plinko]] game board shaped like a triangle, this distribution should give the probabilities of winning the various prizes. [[Image:Pascal's Triangle 4 paths.svg|center|400px]] * If the rows of Pascal's triangle are left-justified, the diagonal bands (colour-coded below) sum to the [[Fibonacci number]]s. ::{| style="align:center;" |- align=center |bgcolor=red|1 |- align=center | style="background:orange;"|1 | style="background:yellow;"|1 |- align=center | style="background:yellow;"|1 |bgcolor=lime|2 |bgcolor=aqua|1 |- align=center |bgcolor=lime|1 |bgcolor=aqua|3 | style="background:violet;"|3 |bgcolor=red|1 |- align=center |bgcolor=aqua|1 | style="background:violet;"|4 |bgcolor=red|6 | style="background:orange;"|4 | style="background:yellow;"|1 |- align=center | style="background:violet;"|1 |bgcolor=red|5 | style="background:orange;"|10 | style="background:yellow;"|10 |bgcolor=lime|5 |bgcolor=aqua|1 |- align=center |bgcolor=red|1 | style="background:orange;"|6 | style="background:yellow;"|15 |bgcolor=lime|20 |bgcolor=aqua|15 | style="background:violet;"|6 |bgcolor=red|1 |- align=center | style="background:orange; width:40px;"|1 | style="background:yellow; width:40px;"|7 | style="background:lime; width:40px;"|21 | style="background:aqua; width:40px;"|35 | style="background:violet; width:40px;"|35 | style="background:red; width:40px;"|21 | style="background:orange; width:40px;"|7 | style="background:yellow; width:40px;"|1 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)