Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pauli matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Eigenvalues and eigenvectors === The eigenvalues of <math>\ \vec a \cdot \vec \sigma\ </math> are <math>\ \pm |\vec{a}|.</math> This follows immediately from tracelessness and explicitly computing the determinant. More abstractly, without computing the determinant, which requires explicit properties of the Pauli matrices, this follows from <math>\ (\vec a \cdot \vec \sigma)^2 - |\vec a|^2 = 0\ ,</math> since this can be factorised into <math>\ (\vec a \cdot \vec \sigma - |\vec a|)(\vec a \cdot \vec \sigma + |\vec a|)= 0.</math> A standard result in linear algebra (a linear map that satisfies a polynomial equation written in distinct linear factors is diagonal) means this implies <math>\ \vec a \cdot \vec \sigma\ </math> is diagonal with possible eigenvalues <math>\ \pm |\vec a|.</math> The tracelessness of <math>\ \vec a \cdot \vec \sigma\ </math> means it has exactly one of each eigenvalue. Its normalized eigenvectors are <math display="block"> \psi_+ = \frac{1}{\sqrt{2 \left|\vec{a} \right|\ (a_3+\left|\vec{a}\right|)\ }\ } \begin{bmatrix} a_3 + \left|\vec{a}\right| \\ a_1 + ia_2 \end{bmatrix}; \qquad \psi_- = \frac{1}{\sqrt{2|\vec{a}|(a_3+|\vec{a}|)}} \begin{bmatrix} ia_2 - a_1 \\ a_3 + |\vec{a}| \end{bmatrix} ~ . </math> These expressions become singular for <math>a_3\to -\left|\vec{a} \right|</math>. They can be rescued by letting <math>\vec{a}=\left|\vec{a} \right|(\epsilon,0,-(1-\epsilon^2/2))</math> and taking the limit <math>\epsilon\to0</math>, which yields the correct eigenvectors (0,1) and (1,0) of <math>\sigma_z</math>. Alternatively, one may use spherical coordinates <math>\vec{a}=a(\sin\vartheta\cos\varphi, \sin\vartheta\sin\varphi, \cos\vartheta)</math> to obtain the eigenvectors <math>\psi_+=(\cos(\vartheta/2), \sin(\vartheta/2)\exp(i\varphi))</math> and <math>\psi_-=(-\sin(\vartheta/2)\exp(-i\varphi), \cos(\vartheta/2))</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)