Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permian
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Life== [[File:HercosestriaPair040111.jpg|thumb|''[[Hercosestria]] cribrosa'', a [[reef]]-forming productid brachiopod (Middle Permian, Glass Mountains, Texas)]] ===Marine biota=== Permian marine deposits are rich in [[fossil]] [[Mollusca|mollusks]],<ref>{{cite journal |last1=Runnegar |first1=Bruce |last2=Newell |first2=Norman Dennis |year=1971 |title=Caspian-like relict molluscan fauna in the South American Permian. |url=https://digitallibrary.amnh.org/handle/2246/1092 |journal=[[Bulletin of the American Museum of Natural History]] |volume=146 |issue=1 |hdl=2246/1092 |access-date=31 March 2023 |archive-date=1 April 2023 |archive-url=https://web.archive.org/web/20230401005659/https://digitallibrary.amnh.org/handle/2246/1092 |url-status=live }}</ref> [[brachiopod]]s,<ref>{{cite journal |last1=Shen |first1=Shu-Zhong |last2=Sun |first2=Tian-Ren |last3=Zhang |first3=Yi-Chun |last4=Yuan |first4=Dong-Xun |date=December 2016 |title=An upper Kungurian/lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Tibet and its palaeobiogeographical implications |url=https://www.sciencedirect.com/science/article/abs/pii/S1871174X16300099 |journal=[[Palaeoworld]] |volume=25 |issue=4 |pages=519–538 |doi=10.1016/j.palwor.2016.03.006 |access-date=31 March 2023 |archive-date=1 April 2023 |archive-url=https://web.archive.org/web/20230401012347/https://www.sciencedirect.com/science/article/abs/pii/S1871174X16300099 |url-status=live |url-access=subscription }}</ref><ref>{{cite journal |last1=Torres-Martinez |first1=M. A. |last2=Vinn |first2=O. |last3=Martin-Aguilar |first3=L. |year=2021 |title=Paleoecology of the first Devonian-like sclerobiont association on Permian brachiopods from southeastern Mexico |url=http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-143b113f-b029-446b-8870-3ec06aa0c288 |journal=[[Acta Palaeontologica Polonica]] |volume=66 |issue=1 |pages=131–141 |doi=10.4202/app.00777.2020 |s2cid=232029240 |access-date=4 April 2023 |archive-date=5 April 2023 |archive-url=https://web.archive.org/web/20230405011626/http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-143b113f-b029-446b-8870-3ec06aa0c288 |url-status=live |doi-access=free }}</ref><ref>{{cite journal |last1=Olszewski |first1=Thomas D. |last2=Erwin |first2=Douglas H. |date=15 April 2004 |title=Dynamic response of Permian brachiopod communities to long-term environmental change |url=https://www.nature.com/articles/nature02464?error=cookies_not_supported&code=177f5c5c-48e0-4263-b485-804d5ddb4927 |journal=[[Nature (journal)|Nature]] |volume=428 |issue=6984 |pages=738–741 |pmid=15085129 |doi=10.1038/nature02464 |bibcode=2004Natur.428..738O |s2cid=4396944 |access-date=31 March 2023 |archive-date=1 April 2023 |archive-url=https://web.archive.org/web/20230401005648/https://www.nature.com/articles/nature02464?error=cookies_not_supported&code=177f5c5c-48e0-4263-b485-804d5ddb4927 |url-status=live |url-access=subscription }}</ref> and [[echinoderm]]s.<ref>{{cite journal |last1=Donovan |first1=Stephen K. |last2=Webster |first2=Gary D. |last3=Waters |first3=Johnny A. |date=27 September 2016 |title=A last peak in diversity: the stalked echinoderms of the Permian of Timor |url=https://onlinelibrary.wiley.com/doi/10.1111/gto.12150 |journal=[[Geology Today]] |volume=32 |issue=5 |pages=179–185 |doi=10.1111/gto.12150 |bibcode=2016GeolT..32..179D |s2cid=132014028 |access-date=31 March 2023 |archive-date=1 April 2023 |archive-url=https://web.archive.org/web/20230401005648/https://onlinelibrary.wiley.com/doi/10.1111/gto.12150 |url-status=live |url-access=subscription }}</ref><ref>{{cite journal |last1=Thompson |first1=Jeffrey R. |last2=Petsios |first2=Elizabeth |last3=Bottjer |first3=David J. |date=18 April 2017 |title=A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids |journal=[[Journal of Paleontology]] |volume=91 |issue=4 |pages=767–780 |doi=10.1017/jpa.2016.158 |bibcode=2017JPal...91..767T |s2cid=29250459 |doi-access=free }}</ref> Brachiopods were highly diverse during the Permian. The extinct order [[Productida]] was the predominant group of Permian brachiopods, accounting for up to about half of all Permian brachiopod genera.<ref name="AnnualReview">{{cite journal | title=The Evolution of Brachiopoda | author=Carlson, S.J. | journal=[[Annual Review of Earth and Planetary Sciences]] | date=2016 | volume=44 | pages=409–438 | doi=10.1146/annurev-earth-060115-012348| bibcode=2016AREPS..44..409C | doi-access=free }}</ref> Brachiopods also served as important ecosystem engineers in Permian reef complexes.<ref>{{Cite journal |last1=Xuesong |first1=Tian |last2=Wei |first2=Wang |last3=Zhenhua |first3=Huang |last4=Zhiping |first4=Zhang |last5=Dishu |first5=Chen |date=25 June 2022 |title=Reef-dwelling brachiopods record paleoecological and paleoenvironmental changes within the Changhsingian (late Permian) platform-margin sponge reef in eastern Sichuan Basin, China |url=https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.25023 |journal=[[The Anatomical Record]] |language=en |doi=10.1002/ar.25023 |pmid=35751577 |s2cid=250022284 |issn=1932-8486 |access-date=9 December 2023|url-access=subscription }}</ref> Amongst [[Ammonoidea|ammonoids]], [[Goniatitida]] were a major group during the Early-Mid Permian, but declined during the Late Permian. Members of the order [[Prolecanitida]] were less diverse. The [[Ceratitida]] originated from the family [[Daraelitidae]] within Prolecanitida during the mid-Permian, and extensively diversified during the Late Permian.<ref>{{Cite journal |last1=McGOWAN |first1=Alistair J. |last2=Smith |first2=Andrew B. |title=Ammonoids Across the Permian/Triassic Boundary: A Cladistic Perspective |date=May 2007 |journal=[[Palaeontology (journal)|Palaeontology]] |language=en |volume=50 |issue=3 |pages=573–590 |doi=10.1111/j.1475-4983.2007.00653.x |bibcode=2007Palgy..50..573M |issn=0031-0239 |doi-access=free}}</ref> Only three families of [[trilobite]] are known from the Permian, [[Proetidae]], Brachymetopidae and [[Phillipsiidae]]. Diversity, origination and extinction rates during the Early Permian were low. Trilobites underwent a diversification during the Kungurian-Wordian, the last in their evolutionary history, before declining during the Late Permian. By the Changhsingian, only a handful (4–6) genera remained.<ref>{{Citation |last1=Lerosey-Aubril |first1=Rudy |title=Quantitative Approach to Diversity and Decline in Late Palaeozoic Trilobites |date=2012 |url=http://link.springer.com/10.1007/978-90-481-3428-1_16 |work=Earth and Life |pages=535–555 |editor-last=Talent |editor-first=John A. |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-90-481-3428-1_16 |isbn=978-90-481-3427-4 |access-date=2021-07-25 |last2=Feist |first2=Raimund |archive-date=2023-07-16 |archive-url=https://web.archive.org/web/20230716091941/https://link.springer.com/chapter/10.1007/978-90-481-3428-1_16 |url-status=live |url-access=subscription }}</ref> Corals exhibited a decline in diversity over the course of the Middle and Late Permian.<ref>{{Cite journal |last1=Wang |first1=Xiang-Dong |last2=Wang |first2=Xiao-Juan |date=1 January 2007 |title=Extinction patterns of Late Permian (Lopingian) corals in China |url=https://www.sciencedirect.com/science/article/pii/S1871174X07000170 |journal=[[Palaeoworld]] |series=Contributions to Permian and Carboniferous Stratigraphy, Brachiopod Palaeontology and End-Permian Mass Extinctions, In Memory of Professor Yu-Gan Jin |volume=16 |issue=1 |pages=31–38 |doi=10.1016/j.palwor.2007.05.009 |issn=1871-174X |access-date=9 December 2023|url-access=subscription }}</ref> ===Terrestrial biota=== Terrestrial life in the Permian included diverse plants, [[Fungus|fungi]], [[arthropod]]s, and various types of [[List of Permian tetrapods|tetrapods]]. The period saw a massive desert covering the interior of [[Pangaea]]. The warm zone spread in the northern hemisphere, where extensive dry desert appeared.<ref name="ucmp.berkeley.edu">{{cite web|url=http://www.ucmp.berkeley.edu/permian/permian.php|title=The Permian Period|work=berkeley.edu|access-date=2015-04-09|archive-date=2017-07-04|archive-url=https://web.archive.org/web/20170704140229/http://www.ucmp.berkeley.edu/permian/permian.php|url-status=live}}</ref> The rocks formed at that time were stained red by iron oxides, the result of intense heating by the sun of a surface devoid of vegetation cover. A number of older types of plants and animals died out or became marginal elements. The Permian began with the Carboniferous flora still flourishing. About the middle of the Permian a major transition in vegetation began. The [[swamp]]-loving [[Lycopodiophyta|lycopod]] trees of the Carboniferous, such as ''[[Lepidodendron]]'' and ''[[Sigillaria]]'', were progressively replaced in the continental interior by the more advanced [[Pteridospermatophyta|seed ferns]] and early [[Pinophyta|conifers]] as a result of the [[Carboniferous rainforest collapse]]. At the close of the Permian, lycopod and [[Equisetopsida|equisete]] swamps reminiscent of Carboniferous flora survived only in [[Cathaysia]], a series of equatorial islands in the [[Paleo-Tethys Ocean]] that later would become [[South China (continent)|South China]].<ref>Xu, R. & Wang, X.-Q. (1982): Di zhi shi qi Zhongguo ge zhu yao Diqu zhi wu jing guan (Reconstructions of Landscapes in Principal Regions of China). Ke xue chu ban she, Beijing. 55 pages, 25 plates.</ref> The Permian saw the radiation of many important conifer groups, including the ancestors of many present-day families. Rich forests were present in many areas, with a diverse mix of plant groups. The southern continent saw extensive seed fern forests of the ''[[Glossopteris]]'' flora. Oxygen levels were probably high there. The [[Ginkgoopsida|ginkgos]] and [[cycad]]s also appeared during this period. ====Insects==== [[File:Permocupes sojanensis holotype and reconstruction.jpg|thumb|Fossil and life restoration of ''[[Permocupes|Permocupes sojanensis]]'', a [[Permocupedidae|permocupedid]] beetle from the Middle Permian of Russia]] Insects, which had first appeared and become abundant during the preceding Carboniferous, experienced a dramatic increase in diversification during the Early Permian. Towards the end of the Permian, there was a substantial drop in both origination and extinction rates.<ref name="Labandeira-2018">{{Citation|last=Labandeira|first=Conrad C.|title=The Fossil History of Insect Diversity|date=2018-05-23|url=https://onlinelibrary.wiley.com/doi/10.1002/9781118945582.ch24|work=Insect Biodiversity|pages=723–788|place=Chichester, UK|publisher=John Wiley & Sons, Ltd|language=en|doi=10.1002/9781118945582.ch24|isbn=978-1-118-94558-2|access-date=2021-07-25|archive-date=2021-07-25|archive-url=https://web.archive.org/web/20210725130020/https://onlinelibrary.wiley.com/doi/10.1002/9781118945582.ch24|url-status=live|url-access=subscription}}</ref> By the start of the Permian, there was already an active coevolutionary arms race between insects and plant reproductive structures, evidenced by both insect-caused damage in plants and defensive structures in plants aimed at minimising predation by insects.<ref>{{Cite journal |last1=Santos |first1=Artai A. |last2=Wappler |first2=Torsten |last3=McLoughlin |first3=Stephen |date=14 October 2024 |editor-last=Cascales-Miñana |editor-first=Borja |title=Earliest evidence of granivory from China (Shanxi Formation) points to seeds as a food source and nursing habitat for insects in the earliest Permian humid tropical forests of Cathaysia |journal=[[PLOS ONE]] |language=en |volume=19 |issue=10 |pages=e0311737 |doi=10.1371/journal.pone.0311737 |doi-access=free |issn=1932-6203 |pmc=11472943 |pmid=39401203 |bibcode=2024PLoSO..1911737S }}</ref> The dominant insects during the Permian Period were early representatives of [[Palaeoptera|Paleoptera]], [[Polyneoptera]], and [[Paraneoptera]]. [[Palaeodictyopteroidea]], which had represented the dominant group of insects during the Carboniferous, declined during the Permian. This is likely due to [[Competition (biology)|competition]] by [[Hemiptera]], due to their similar mouthparts and therefore ecology. Primitive relatives of [[Damselfly|damselflies]] and [[Dragonfly|dragonflies]] ([[Meganisoptera]]), which include the largest flying insects of all time, also declined during the Permian.<ref name="Schachat-2021">{{Cite journal|last1=Schachat|first1=Sandra R|last2=Labandeira|first2=Conrad C|date=2021-03-12|editor-last=Dyer|editor-first=Lee|title=Are Insects Heading Toward Their First Mass Extinction? Distinguishing Turnover From Crises in Their Fossil Record|url=https://academic.oup.com/aesa/article/114/2/99/6056214|journal=[[Annals of the Entomological Society of America]]|language=en|volume=114|issue=2|pages=99–118|doi=10.1093/aesa/saaa042|issn=0013-8746|doi-access=free|access-date=2021-07-25|archive-date=2021-07-25|archive-url=https://web.archive.org/web/20210725130021/https://academic.oup.com/aesa/article/114/2/99/6056214|url-status=live}}</ref> [[Holometabola]], the largest group of modern insects, also diversified during this time.<ref name="Labandeira-2018" /> "[[Grylloblattida|Grylloblattidans]]", an extinct group of winged insects thought to be related to modern [[Ice crawler|ice crawlers]], reached their apex of diversity during the Permian, representing up to a third of all insects at some localities.<ref name=":0">{{Cite journal |last1=Cui |first1=Yingying |last2=Bardin |first2=Jérémie |last3=Wipfler |first3=Benjamin |last4=Demers-Potvin |first4=Alexandre |last5=Bai |first5=Ming |last6=Tong |first6=Yi-Jie |last7=Chen |first7=Grace Nuoxi |last8=Chen |first8=Huarong |last9=Zhao |first9=Zhen-Ya |last10=Ren |first10=Dong |last11=Béthoux |first11=Olivier |date=2024-03-07 |title=A winged relative of ice-crawlers in amber bridges the cryptic extant Xenonomia and a rich fossil record |url=https://onlinelibrary.wiley.com/doi/10.1111/1744-7917.13338 |journal=Insect Science |volume=31 |issue=5 |pages=1645–1656 |language=en |doi=10.1111/1744-7917.13338 |pmid=38454304 |bibcode=2024InsSc..31.1645C |issn=1672-9609|url-access=subscription }}</ref> [[Mecoptera]] (sometimes known as scorpionflies) first appeared during the Early Permian, going on to become diverse during the Late Permian. Some Permian mecopterans, like [[Mesopsychidae]] have long proboscis that suggest they may have pollinated gymnosperms.<ref>{{Citation |last1=Lin |first1=Xiaodan |title=Mecoptera – Scorpionflies and Hangingflies |date=2019-04-29 |work=Rhythms of Insect Evolution |pages=555–595 |editor-last=Ren |editor-first=Dong |url=https://onlinelibrary.wiley.com/doi/10.1002/9781119427957.ch24 |access-date=2024-09-21 |edition=1 |publisher=Wiley |language=en |doi=10.1002/9781119427957.ch24 |isbn=978-1-119-42798-8 |last2=Shih |first2=Chungkun |last3=Li |first3=Sheng |last4=Ren |first4=Dong |editor2-last=Shih |editor2-first=Chung Kun |editor3-last=Gao |editor3-first=Taiping |editor4-last=Yao |editor4-first=Yunzhi|url-access=subscription }}</ref> The earliest known [[beetle]]s appeared at the beginning of the Permian. Early beetles such as members of [[Permocupedidae]] were likely [[xylophagous]], feeding on decaying wood. Several lineages such as Schizophoridae expanded into aquatic habitats by the Late Permian.<ref>{{Cite journal|last1=Ponomarenko|first1=A. G.|last2=Prokin|first2=A. A.|date=December 2015|title=Review of paleontological data on the evolution of aquatic beetles (Coleoptera)|url=http://link.springer.com/10.1134/S0031030115130080|journal=[[Paleontological Journal]]|language=en|volume=49|issue=13|pages=1383–1412|doi=10.1134/S0031030115130080|bibcode=2015PalJ...49.1383P |s2cid=88456234|issn=0031-0301|access-date=2021-07-26|archive-date=2023-07-16|archive-url=https://web.archive.org/web/20230716091929/https://link.springer.com/article/10.1134/S0031030115130080|url-status=live|url-access=subscription}}</ref> Members of the modern orders [[Archostemata]] and [[Adephaga]] are known from the Late Permian.<ref>{{Cite journal|last1=Ponomarenko|first1=A. G.|last2=Volkov|first2=A. N.|date=November 2013|title=Ademosynoides asiaticus Martynov, 1936, the earliest known member of an extant beetle family (Insecta, Coleoptera, Trachypachidae)|url=http://dx.doi.org/10.1134/s0031030113060063|journal=Paleontological Journal|volume=47|issue=6|pages=601–606|doi=10.1134/s0031030113060063|bibcode=2013PalJ...47..601P |s2cid=84935456|issn=0031-0301|access-date=2021-07-25|archive-date=2023-07-16|archive-url=https://web.archive.org/web/20230716091930/https://link.springer.com/article/10.1134/S0031030113060063|url-status=live|url-access=subscription}}</ref><ref>{{Cite journal|last1=Yan|first1=Evgeny Viktorovich|last2=Beutel|first2=Rolf Georg|last3=Lawrence|first3=John Francis|last4=Yavorskaya|first4=Margarita Igorevna|last5=Hörnschemeyer|first5=Thomas|last6=Pohl|first6=Hans|last7=Vassilenko|first7=Dmitry Vladimirovich|last8=Bashkuev|first8=Alexey Semenovich|last9=Ponomarenko|first9=Alexander Georgievich|date=2020-09-13|title=Archaeomalthus -(Coleoptera, Archostemata) a 'ghost adult' of Micromalthidae from Upper Permian deposits of Siberia?|url=https://www.tandfonline.com/doi/full/10.1080/08912963.2018.1561672|journal=[[Historical Biology]]|language=en|volume=32|issue=8|pages=1019–1027|doi=10.1080/08912963.2018.1561672|bibcode=2020HBio...32.1019Y |s2cid=91721262|issn=0891-2963|access-date=2021-07-25|archive-date=2019-12-15|archive-url=https://web.archive.org/web/20191215170246/https://www.tandfonline.com/doi/full/10.1080/08912963.2018.1561672|url-status=live|url-access=subscription}}</ref> Complex wood boring traces found in the Late Permian of China suggest that members of [[Polyphaga]], the most diverse group of modern beetles, were also present by the Late Permian.<ref>{{Cite journal|last1=Feng|first1=Zhuo|last2=Wang|first2=Jun|last3=Rößler|first3=Ronny|last4=Ślipiński|first4=Adam|last5=Labandeira|first5=Conrad|date=2017-09-15|title=Late Permian wood-borings reveal an intricate network of ecological relationships|journal=[[Nature Communications]]|language=en|volume=8|issue=1|pages=556|doi=10.1038/s41467-017-00696-0|pmid=28916787|issn=2041-1723|pmc=5601472|bibcode=2017NatCo...8..556F}}</ref> ====Tetrapods==== [[File:Weigeltisaurus reconstruction.png|left|thumb|Restoration of ''[[Weigeltisaurus jaekeli]]'', a [[Weigeltisauridae|weigeltisaurid]] from the Late Permian of Europe. Weigeltisaurids represent the oldest known gliding vertebrates.]] The terrestrial fossil record of the Permian is patchy and temporally discontinuous. Early Permian records are dominated by equatorial Europe and North America, while those of the Middle and Late Permian are dominated by temperate [[Karoo Supergroup]] sediments of South Africa and the Ural region of European Russia.<ref name="Brocklehurst-2020">{{Cite journal |last=Brocklehurst |first=Neil |date=2020-06-10 |title=Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty |journal=[[Proceedings of the Royal Society B: Biological Sciences]] |language=en |volume=287 |issue=1928 |pages=20200154 |doi=10.1098/rspb.2020.0154 |issn=0962-8452 |pmc=7341920 |pmid=32517621}}</ref> Early Permian terrestrial faunas of North America and Europe were dominated by primitive [[pelycosaur]] [[synapsid]]s including the herbivorous [[Edaphosauridae|edaphosaurids]], and carnivorous [[Sphenacodontidae|sphenacodontids]], [[Diadectidae|diadectids]] and [[amphibian]]s.<ref name="Huttenlocker, A. K. 2012. Pp. 90">Huttenlocker, A. K., and E. Rega. 2012. The Paleobiology and Bone Microstructure of Pelycosaurian-grade Synapsids. Pp. 90–119 in A. Chinsamy (ed.) Forerunners of Mammals: Radiation, Histology, Biology. Indiana University Press.</ref><ref>{{cite web|url=http://www.ucmp.berkeley.edu/napc/abs23.html#SumidaS|title=NAPC Abstracts, Sto - Tw|work=berkeley.edu|access-date=2014-03-31|archive-date=2020-02-26|archive-url=https://web.archive.org/web/20200226163702/https://ucmp.berkeley.edu/napc/abs23.html#SumidaS|url-status=live}}</ref> Early Permian reptiles, such as [[Acleistorhinidae|acleistorhinids]], were mostly small insectivores.<ref>{{cite journal |last1=Modesto |first1=Sean P. |last2=Scott |first2=Diane M. |last3=Reisz |first3=Robert R. |date=1 July 2009 |title=Arthropod remains in the oral cavities of fossil reptiles support inference of early insectivory |journal=[[Biology Letters]] |volume=5 |issue=6 |pages=838–840 |doi=10.1098/rsbl.2009.0326 |pmid=19570779 |pmc=2827974 }}</ref> ====Amniotes==== [[Synapsid]]s (the group that would later include mammals) thrived and diversified greatly during the Cisuralian. Permian synapsids included some large members such as ''[[Dimetrodon]]''. The special adaptations of synapsids enabled them to flourish in the drier climate of the Permian and they grew to dominate the vertebrates.<ref name="Huttenlocker, A. K. 2012. Pp. 90"/> A faunal turnover occurred around the transition between the Cisuralian and Guadalupian, with the decline of amphibians and the replacement of pelycosaurs (a [[paraphyletic]] group) with more advanced [[therapsid]]s,<ref name="Didier&Laurin_2021" /> although the decline of early synapsid clades was apparently a slow event that lasted about 20 Ma, from the [[Sakmarian]] to the end of the [[Kungurian]].<ref name="Didier & Laurin 2024">{{cite journal |last1=Didier |first1=Gilles |last2=Laurin |first2=Michel |title=Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions |journal=Cladistics |date=June 2024 |volume=40 |issue=3 |pages=282–306 |doi=10.1111/cla.12577 |language=en |issn=0748-3007|doi-access=free |pmid=38651531 }}</ref> Predator-prey interactions among terrestrial synapsids became more dynamic.<ref>{{Cite journal |last1=Singh |first1=Suresh A. |last2=Elsler |first2=Armin |last3=Stubbs |first3=Thomas L. |last4=Rayfield |first4=Emily J. |last5=Benton |first5=Michael James |date=17 February 2024 |title=Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems |journal=[[Communications Biology]] |language=en |volume=7 |issue=1 |page=201 |doi=10.1038/s42003-024-05879-2 |issn=2399-3642 |pmc=10874460 |pmid=38368492 }}</ref> If terrestrial deposition ended around the end of the Cisuralian in North America and began in Russia during the early Guadalupian, a continuous record of the transition is not preserved. Uncertain dating has led to suggestions that there is a global hiatus in the terrestrial fossil record during the late Kungurian and early [[Roadian]], referred to as "Olson's Gap" that obscures the nature of the transition. Other proposals have suggested that the North American and Russian records overlap,<ref>{{cite journal |last1=Reisz |first1=Robert R. |last2=Laurin |first2=Michel |title=The reptile Macroleter: First vertebrate evidence for correlation of Upper Permian continental strata of North America and Russia |journal=GSA Bulletin |date=1 September 2001 |volume=113 |issue=9 |pages=1229–1233 |doi=10.1130/0016-7606(2001)113<1229:TRMFVE>2.0.CO;2 |bibcode=2001GSAB..113.1229R |url=https://doi.org/10.1130/0016-7606%282001%29113%3C1229%3ATRMFVE%3E2.0.CO%3B2 |issn=0016-7606 |access-date=17 January 2022 |archive-date=16 July 2023 |archive-url=https://web.archive.org/web/20230716092442/https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/113/9/1229/183805/The-reptile-Macroleter-First-vertebrate-evidence?redirectedFrom=fulltext |url-status=live |url-access=subscription }}</ref><ref name="Lozovsky 2005">{{cite journal |last1=Lozovsky |first1=Vladlen R. |title=Olson's gap or Olson's bridge, that is the question |journal=New Mexico Museum of Natural History and Science Bulletin |date=1 January 2005 |volume=30, The Nonmarine Permian |pages=179–184 |url=https://books.google.com/books?id=EmPvCQAAQBAJ&dq=Olson%27s+gap+or+Olson%27s+bridge%2C+that+is+the+question&pg=PA179 |publisher=New Mexico Museum of Natural History and Science |language=en}}</ref><ref>{{cite journal |last1=Brocklehurst |first1=Neil |date=10 June 2020 |title=Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty |url=https://doi.org/10.1098/rspb.2020.0154 |url-status=live |journal=[[Proceedings of the Royal Society B: Biological Sciences]] |volume=287 |issue=1928 |pages=20200154 |doi=10.1098/rspb.2020.0154 |pmc=7341920 |pmid=32517621 |archive-url=https://web.archive.org/web/20200713165459/https://royalsocietypublishing.org/doi/10.1098/rspb.2020.0154 |archive-date=13 July 2020 |access-date=17 January 2022}}</ref><ref name="Laurin & Hook 2022">{{cite journal |last1=Laurin |first1=Michel |last2=Hook |first2=Robert W. |title=The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups |journal=BSGF - Earth Sciences Bulletin |date=2022 |volume=193 |pages=10 |doi=10.1051/bsgf/2022007 |url=https://doi.org/10.1051/bsgf/2022007 |language=en}}</ref> with the latest terrestrial North American deposition occurring during the Roadian, suggesting that there was an extinction event, dubbed "[[Olson's Extinction]]".<ref>{{Cite journal|last=Lucas|first=S.G.|date=July 2017|title=Permian tetrapod extinction events|url=https://linkinghub.elsevier.com/retrieve/pii/S0012825217300600|journal=[[Earth-Science Reviews]]|language=en|volume=170|pages=31–60|doi=10.1016/j.earscirev.2017.04.008|bibcode=2017ESRv..170...31L|access-date=2021-04-18|archive-date=2021-05-06|archive-url=https://web.archive.org/web/20210506060019/https://linkinghub.elsevier.com/retrieve/pii/S0012825217300600|url-status=live|url-access=subscription}}</ref> The Middle Permian faunas of South Africa and Russia are dominated by therapsids, most abundantly by the diverse [[Dinocephalia]]. Dinocephalians become extinct at the end of the Middle Permian, during the [[Capitanian mass extinction event]]. Late Permian faunas are dominated by advanced therapsids such as the predatory sabertoothed [[gorgonopsia]]ns and herbivorous beaked [[dicynodont]]s, alongside large herbivorous [[pareiasaur]] [[Parareptilia|parareptiles]].<ref>{{Cite journal|date=2017-07-01|title=Permian tetrapod extinction events|url=https://www.sciencedirect.com/science/article/abs/pii/S0012825217300600|journal=[[Earth-Science Reviews]]|language=en|volume=170|pages=31–60|doi=10.1016/j.earscirev.2017.04.008|issn=0012-8252|last1=Lucas|first1=S.G.|bibcode=2017ESRv..170...31L|access-date=2021-08-18|archive-date=2021-08-18|archive-url=https://web.archive.org/web/20210818230353/https://www.sciencedirect.com/science/article/abs/pii/S0012825217300600|url-status=live|url-access=subscription}}</ref> The [[Archosauromorpha]], the group of reptiles that would give rise to the [[pseudosuchia]]ns, [[dinosaur]]s, and [[pterosaur]]s in the following Triassic, first appeared and diversified during the Late Permian, including the first appearance of the [[Archosauriformes]] during the latest Permian.<ref>{{Cite journal|last1=Spiekman|first1=Stephan N. F.|last2=Fraser|first2=Nicholas C.|last3=Scheyer|first3=Torsten M.|date=2021-05-03|title=A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other "protorosaurs", and its implications for the early evolution of stem archosaurs|journal=[[PeerJ]]|language=en|volume=9|pages=e11143|doi=10.7717/peerj.11143|pmid=33986981|issn=2167-8359|pmc=8101476|doi-access=free }}</ref> [[Cynodont]]s, the group of therapsids ancestral to modern [[mammal]]s, first appeared and gained a worldwide distribution during the Late Permian.<ref>{{Cite journal|last1=Huttenlocker|first1=Adam K.|last2=Sidor|first2=Christian A.|date=2020-12-01|title=A Basal Nonmammaliaform Cynodont from the Permian of Zambia and the Origins of Mammalian Endocranial and Postcranial Anatomy|url=https://www.tandfonline.com/doi/full/10.1080/02724634.2020.1827413|journal=[[Journal of Vertebrate Paleontology]]|language=en|volume=40|issue=5|pages=e1827413|doi=10.1080/02724634.2020.1827413|bibcode=2020JVPal..40E7413H|s2cid=228883951|issn=0272-4634|access-date=2021-08-18|archive-date=2021-11-07|archive-url=https://web.archive.org/web/20211107151159/https://www.tandfonline.com/doi/full/10.1080/02724634.2020.1827413|url-status=live|url-access=subscription}}</ref> Another group of therapsids, the [[therocephalia]]ns (such as ''[[Lycosuchus]]''), arose in the Middle Permian.<ref>{{cite journal | author = Huttenlocker A. K. | year = 2009 | title = An investigation into the cladistic relationships and monophyly of therocephalian therapsids (Amniota: Synapsida) | journal = [[Zoological Journal of the Linnean Society]] | volume = 157 | issue = 4| pages = 865–891 | doi=10.1111/j.1096-3642.2009.00538.x| doi-access = free }}</ref><ref>{{cite journal |author1=Huttenlocker A. K. |author2=Sidor C. A. |author3=Smith R. M. H. | year = 2011 | title = A new specimen of Promoschorhynchus (Therapsida: Therocephalia: Akidnognathidae) from the lowermost Triassic of South Africa and its implications for therocephalian survival across the Permo-Triassic boundary | journal = [[Journal of Vertebrate Paleontology]] | volume = 31 |issue=2 | pages = 405–421 | doi=10.1080/02724634.2011.546720|bibcode=2011JVPal..31..405H |s2cid=129242450 }}</ref> There were no flying vertebrates, though the extinct lizard-like reptile family [[Weigeltisauridae]] from the Late Permian had extendable wings like modern [[Draco (lizard)|gliding lizards]], and are the oldest known gliding vertebrates.<ref name="Pritchard-2021">{{Cite journal |last1=Pritchard |first1=Adam C. |last2=Sues |first2=Hans-Dieter |last3=Scott |first3=Diane |last4=Reisz |first4=Robert R. |date=20 May 2021 |title=Osteology, relationships and functional morphology of Weigeltisaurus jaekeli (Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany |journal=[[PeerJ]] |language=en |volume=9 |pages=e11413 |doi=10.7717/peerj.11413 |pmid=34055483 |issn=2167-8359 |pmc=8141288 |doi-access=free }}</ref><ref>{{Cite journal |last1=Bulanov |first1=V. V. |last2=Sennikov |first2=A. G. |date=1 October 2006 |title=The first gliding reptiles from the upper Permian of Russia |url=https://link.springer.com/article/10.1134/S0031030106110037 |journal=[[Paleontological Journal]] |language=en |volume=40 |issue=5 |pages=S567–S570 |doi=10.1134/S0031030106110037 |bibcode=2006PalJ...40S.567B |issn=1555-6174 |s2cid=84310001 |access-date=3 November 2023|url-access=subscription }}</ref> <gallery class="center"> File:EdaphosaurusDB.jpg|''[[Edaphosaurus|Edaphosaurus pogonias]]'' and ''[[Platyhystrix]]'' – Early Permian, North America and Europe File:Dimetr eryopsDB.jpg|''[[Dimetrodon|Dimetrodon grandis]]'' and ''[[Eryops]]'' – Early Permian, North America File:Ocher fauna DB.jpg|Ocher fauna, ''[[Estemmenosuchus|Estemmenosuchus uralensis]]'' and ''[[Eotitanosuchus]]'' – Middle Permian, Ural Region File:Titanophoneus 3.jpg|''[[Titanophoneus]]'' and ''[[Ulemosaurus]]'' – Ural Region File:Inostrancevia 4DB.jpg|''[[Inostrancevia|Inostrancevia alexandri]]'' and ''[[Scutosaurus]]'' – Late Permian, North European Russia (Northern Dvina) </gallery> ====Amphibians==== Permian stem-amniotes consisted of [[lepospondyli]] and [[Batrachosauria|batrachosaurs]], according to some phylogenies;<ref name="Ruta & Coates 2007">{{cite journal |last1=Ruta |first1=Marcello |last2=Coates |first2=Michael I. |title=Dates, nodes and character conflict: Addressing the Lissamphibian origin problem |journal=Journal of Systematic Palaeontology |date=January 2007 |volume=5 |issue=1 |pages=69–122 |doi=10.1017/S1477201906002008 |bibcode=2007JSPal...5...69R |url=https://doi.org/10.1017/S1477201906002008 |language=en |issn=1477-2019|url-access=subscription }}</ref> according to others, stem-amniotes are represented only by [[Diadectomorpha|diadectomorphs]].<ref name="Marjanović & Laurin 2019">{{cite journal |last1=Marjanović |first1=David |last2=Laurin |first2=Michel |title=Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix |journal=PeerJ |date=4 January 2019 |volume=6 |pages=e5565 |doi=10.7717/peerj.5565 |doi-access=free |pmid=30631641 |pmc=6322490 |language=en |issn=2167-8359}}</ref> Temnospondyls reached a peak of diversity in the Cisuralian, with a substantial decline during the Guadalupian-Lopingian following Olson's extinction, with the family diversity dropping below Carboniferous levels.<ref>{{Cite journal|last1=Ruta|first1=Marcello|last2=Benton|first2=Michael J.|title=Calibrated Diversity, Tree Topology and the Mother of Mass Extinctions: The Lesson of Temnospondyls|date=November 2008|journal=[[Palaeontology (journal)|Palaeontology]]|language=en|volume=51|issue=6|pages=1261–1288|doi=10.1111/j.1475-4983.2008.00808.x|bibcode=2008Palgy..51.1261R|s2cid=85411546|doi-access=free}}</ref> [[Embolomeri|Embolomeres]], a group of aquatic crocodile-like limbed vertebrates that are [[Reptiliomorpha|reptilliomorphs]] under some phylogenies. They previously had their last records in the Cisuralian, are now known to have persisted into the Lopingian in China.<ref>{{Cite journal|last1=Chen|first1=Jianye|last2=Liu|first2=Jun|date=2020-12-01|title=The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China|journal=[[Fossil Record]]|volume=23|issue=2|pages=205–213|doi=10.5194/fr-23-205-2020|bibcode=2020FossR..23..205C |issn=2193-0074|doi-access=free}}</ref> Modern amphibians ([[lissamphibia]]ns) are suggested to have originated during Permian, descending from a lineage of [[Dissorophoidea|dissorophoid]] temnospondyls<ref>{{Cite journal|last=Schoch|first=Rainer R.|date=January 2019|title=The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls|journal=[[Journal of Paleontology]]|language=en|volume=93|issue=1|pages=137–156|doi=10.1017/jpa.2018.67|bibcode=2019JPal...93..137S |issn=0022-3360|doi-access=free}}</ref> or [[Lepospondyli|lepospondyls]].<ref name="Marjanović & Laurin 2019"></ref> === Fish === The diversity of fish during the Permian is relatively low compared to the following Triassic. The dominant group of [[Osteichthyes|bony fishes]] during the Permian were the "[[Palaeonisciformes|Paleopterygii]]" a [[paraphyletic]] grouping of [[Actinopterygii]] that lie outside of [[Neopterygii]].<ref name="Romano-2016" /> The earliest unequivocal members of Neopterygii appear during the Early Triassic, but a Permian origin is suspected.<ref>{{Cite journal|last=Romano|first=Carlo|date=2021|title=A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes|journal=Frontiers in Earth Science|volume=8|language=English|doi=10.3389/feart.2020.618853|issn=2296-6463|doi-access=free|bibcode=2021FrEaS...8.8853R }}</ref> The diversity of [[coelacanth]]s is relatively low throughout the Permian in comparison to other marine fishes, though there is an increase in diversity during the terminal Permian (Changhsingian), corresponding with the highest diversity in their evolutionary history during the Early Triassic.<ref name="Romano-2016" /> Diversity of freshwater fish faunas was generally low and dominated by [[lungfish]] and "Paleopterygians".<ref name="Romano-2016">{{Cite journal|last1=Romano|first1=Carlo|last2=Koot|first2=Martha B.|last3=Kogan|first3=Ilja|last4=Brayard|first4=Arnaud|last5=Minikh|first5=Alla V.|last6=Brinkmann|first6=Winand|last7=Bucher|first7=Hugo|last8=Kriwet|first8=Jürgen|date=February 2016|title=Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution: Diversity and size of Permian-Triassic bony fishes|url=https://onlinelibrary.wiley.com/doi/10.1111/brv.12161|journal=Biological Reviews|language=en|volume=91|issue=1|pages=106–147|doi=10.1111/brv.12161|pmid=25431138|s2cid=5332637|access-date=2021-07-23|archive-date=2021-07-23|archive-url=https://web.archive.org/web/20210723083954/https://onlinelibrary.wiley.com/doi/10.1111/brv.12161|url-status=live}}</ref> The last common ancestor of all living lungfish is thought to have existed during the Early Permian. Though the fossil record is fragmentary, lungfish appear to have undergone an evolutionary diversification and size increase in freshwater habitats during the Early Permian, but subsequently declined during the middle and late Permian.<ref>{{Cite journal|last1=Kemp|first1=Anne|last2=Cavin|first2=Lionel|last3=Guinot|first3=Guillaume|date=April 2017|title=Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera|journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]]|language=en|volume=471|pages=209–219|doi=10.1016/j.palaeo.2016.12.051|bibcode=2017PPP...471..209K|doi-access=free}}</ref> Conodonts experienced their lowest diversity of their entire evolutionary history during the Permian.<ref>{{Cite journal |last1=Ginot |first1=Samuel |last2=Goudemand |first2=Nicolas |date=December 2020 |title=Global climate changes account for the main trends of conodont diversity but not for their final demise |url=https://www.researchgate.net/publication/344363357 |journal=[[Global and Planetary Change]] |language=en |volume=195 |pages=103325 |bibcode=2020GPC...19503325G |doi=10.1016/j.gloplacha.2020.103325 |s2cid=225005180 |access-date=4 April 2023 |doi-access=free}}</ref> Permian chondrichthyan faunas are poorly known.<ref name="Koot-2013">{{Cite journal|last1=Koot|first1=Martha B.|last2=Cuny|first2=Gilles|last3=Tintori|first3=Andrea|last4=Twitchett|first4=Richard J.|date=March 2013|title=A new diverse shark fauna from the Wordian (Middle Permian) Khuff Formation in the interior Haushi-Huqf area, Sultanate of Oman: CHONDRICHTHYANS FROM THE WORDIAN KHUFF FORMATION OF OMAN|journal=[[Palaeontology (journal)|Palaeontology]]|language=en|volume=56|issue=2|pages=303–343|doi=10.1111/j.1475-4983.2012.01199.x|s2cid=86428264 |doi-access=}}</ref> Members of the chondrichthyan clade [[Holocephali]], which contains living [[chimaera]]s, reached their apex of diversity during the Carboniferous-Permian, the most famous Permian representative being the "buzz-saw shark" ''[[Helicoprion]],'' known for its unusual spiral shaped spiral tooth whorl in the lower jaw.<ref>{{Cite journal|last1=Tapanila|first1=Leif|last2=Pruitt|first2=Jesse|last3=Wilga|first3=Cheryl D.|last4=Pradel|first4=Alan|date=2020|title=Saws, Scissors, and Sharks: Late Paleozoic Experimentation with Symphyseal Dentition|journal=The Anatomical Record|language=en|volume=303|issue=2|pages=363–376|doi=10.1002/ar.24046|pmid=30536888|s2cid=54478736|issn=1932-8494|doi-access=free}}</ref> [[Hybodontiformes|Hybodonts]], a group of shark-like chondrichthyans, were widespread and abundant members of marine and freshwater faunas throughout the Permian.<ref name="Koot-2013" /><ref>{{Cite journal|last1=Peecook|first1=Brandon R.|last2=Bronson|first2=Allison W.|last3=Otoo|first3=Benjamin K.A.|last4=Sidor|first4=Christian A.|date=November 2021|title=Freshwater fish faunas from two Permian rift valleys of Zambia, novel additions to the ichthyofauna of southern Pangea|journal=Journal of African Earth Sciences|language=en|volume=183|pages=104325|doi=10.1016/j.jafrearsci.2021.104325|bibcode=2021JAfES.18304325P|doi-access=free}}</ref> [[Xenacanthiformes]], another extinct group of shark-like chondrichthyans, were common in freshwater habitats, and represented the [[apex predator]]s of freshwater ecosystems.<ref>{{Cite journal |last1=Kriwet |first1=Jürgen |last2=Witzmann |first2=Florian |last3=Klug |first3=Stefanie |last4=Heidtke |first4=Ulrich H.J |date=2008-01-22 |title=First direct evidence of a vertebrate three-level trophic chain in the fossil record |journal=Proceedings of the Royal Society B: Biological Sciences |language=en |volume=275 |issue=1631 |pages=181–186 |doi=10.1098/rspb.2007.1170 |issn=0962-8452 |pmc=2596183 |pmid=17971323}}</ref> === Flora === [[File:The World of the Carboniferous-Permian boundary.svg|left|thumb|290x290px|Map of the world at the Carboniferous-Permian boundary, showing the four floristic provinces]] Four [[Phytochorion|floristic provinces]] in the Permian are recognised, the [[Angaraland|Angaran]], Euramerican, Gondwanan, and Cathaysian realms.<ref name="Wang-2012">{{Cite journal|last1=Wang|first1=J.|last2=Pfefferkorn|first2=H. W.|last3=Zhang|first3=Y.|last4=Feng|first4=Z.|date=2012-03-27|title=Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia|journal=Proceedings of the National Academy of Sciences|language=en|volume=109|issue=13|pages=4927–4932|doi=10.1073/pnas.1115076109|issn=0027-8424|pmc=3323960|pmid=22355112|doi-access=free}}</ref> The [[Carboniferous rainforest collapse|Carboniferous Rainforest Collapse]] would result in the replacement of [[Lycopodiopsida|lycopsid]]-dominated forests with [[Tree fern|tree-fern]] dominated ones during the late Carboniferous in Euramerica, and result in the differentiation of the Cathaysian floras from those of Euramerica.<ref name="Wang-2012" /> The Gondwanan floristic region was dominated by [[Glossopteridales]], a group of woody gymnosperm plants, for most of the Permian, extending to high southern latitudes. The ecology of the most prominent glossopterid, ''[[Glossopteris]]'', has been compared to that of [[Taxodium distichum|bald cypress]], living in [[mire]]s with waterlogged soils.<ref name="McLoughlin-2012">{{cite journal|last1=McLoughlin|first1=S|year=2012|title=Glossopteris – insights into the architecture and relationships of an iconic Permian Gondwanan plant|journal=Journal of the Botanical Society of Bengal|volume=65|issue=2|pages=1–14}}</ref> The tree-like [[calamites]], distant relatives of modern [[Equisetum|horsetails]], lived in coal swamps and grew in [[bamboo]]-like vertical thickets. A mostly complete specimen of ''[[Arthropitys]]'' from the Early Permian [[Chemnitz petrified forest]] of Germany demonstrates that they had complex branching patterns similar to modern [[angiosperm]] trees.<ref name="Feng-2017">{{Cite journal|last=Feng|first=Zhuo|date=September 2017|title=Late Palaeozoic plants|journal=[[Current Biology]]|volume=27|issue=17|pages=R905–R909|doi=10.1016/j.cub.2017.07.041|pmid=28898663|issn=0960-9822|doi-access=free|bibcode=2017CBio...27.R905F }}</ref> By the Late Permian, high thin forests had become widespread across the globe, as evidenced by the global distribution of weigeltisaurids.<ref>{{Cite journal |last1=Bulanov |first1=V. V. |last2=Sennikov |first2=A. G. |date=16 December 2010 |title=New data on the morphology of permian gliding weigeltisaurid reptiles of Eastern Europe |url=http://link.springer.com/10.1134/S0031030110060109 |journal=[[Paleontological Journal]] |language=en |volume=44 |issue=6 |pages=682–694 |doi=10.1134/S0031030110060109 |bibcode=2010PalJ...44..682B |issn=0031-0301 |access-date=17 July 2024 |via=Springer Link|url-access=subscription }}</ref> [[File:Diorama of a Permian forest floor - Eryops (45651934102).jpg|thumb|[[Life reconstruction]] of Permian [[wetland]] environment, showing an ''[[Eryops]]'']] The oldest likely record of [[Ginkgoales]] (the group containing ''[[Ginkgo]]'' and its close relatives) is ''Trichopitys heteromorpha'' from the earliest Permian of France.<ref>{{Cite journal|last=Zhou|first=Zhi-Yan|date=March 2009|title=An overview of fossil Ginkgoales|url=https://linkinghub.elsevier.com/retrieve/pii/S1871174X0900002X|journal=Palaeoworld|language=en|volume=18|issue=1|pages=1–22|doi=10.1016/j.palwor.2009.01.001|access-date=2021-03-25|archive-date=2020-06-01|archive-url=https://web.archive.org/web/20200601090659/https://linkinghub.elsevier.com/retrieve/pii/S1871174X0900002X|url-status=live|url-access=subscription}}</ref> The oldest known fossils definitively assignable to modern [[cycad]]s are known from the Late Permian.<ref>{{Cite journal|last1=Feng|first1=Zhuo|last2=Lv|first2=Yong|last3=Guo|first3=Yun|last4=Wei|first4=Hai-Bo|last5=Kerp|first5=Hans|date=November 2017|title=Leaf anatomy of a late Palaeozoic cycad|url= |journal=Biology Letters|language=en|volume=13|issue=11|pages=20170456|doi=10.1098/rsbl.2017.0456|issn=1744-9561|pmc=5719380|pmid=29093177}}</ref> In Cathaysia, where a wet tropical frost-free climate prevailed, the [[Noeggerathiales]], an extinct group of tree fern-like [[progymnosperm]]s were a common component of the flora<ref>{{Cite journal|last1=Pfefferkorn|first1=Hermann W.|last2=Wang|first2=Jun|date=April 2016|title=Paleoecology of Noeggerathiales, an enigmatic, extinct plant group of Carboniferous and Permian times|url=https://linkinghub.elsevier.com/retrieve/pii/S0031018215006884|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|language=en|volume=448|pages=141–150|doi=10.1016/j.palaeo.2015.11.022|bibcode=2016PPP...448..141P|access-date=2021-03-25|archive-date=2018-06-28|archive-url=https://web.archive.org/web/20180628232235/https://linkinghub.elsevier.com/retrieve/pii/S0031018215006884|url-status=live|url-access=subscription}}</ref><ref>{{Cite journal|last1=Wang|first1=Jun|last2=Wan|first2=Shan|last3=Kerp|first3=Hans|last4=Bek|first4=Jiří|last5=Wang|first5=Shijun|date=March 2020|title=A whole noeggerathialean plant Tingia unita Wang from the earliest Permian peat-forming flora, Wuda Coalfield, Inner Mongolia|url=https://linkinghub.elsevier.com/retrieve/pii/S0034666719303185|journal=Review of Palaeobotany and Palynology|volume=294|language=en|pages=104204|doi=10.1016/j.revpalbo.2020.104204|s2cid=216381417|access-date=2021-03-25|archive-date=2022-10-23|archive-url=https://web.archive.org/web/20221023233804/https://linkinghub.elsevier.com/retrieve/pii/S0034666719303185|url-status=live|url-access=subscription}}</ref> The earliest Permian (~ 298 million years ago) Cathyasian Wuda Tuff flora, representing a coal swamp community, has an upper canopy consisting of [[lycopsid]] tree ''[[Sigillaria]],'' with a lower canopy consisting of [[Marattiaceae|Marattialean]] tree ferns, and Noeggerathiales.<ref name="Wang-2012" /> Early [[conifer]]s appeared in the Late Carboniferous, represented by primitive [[walchia]]n conifers, but were replaced with more derived [[Voltziales|voltzialeans]] during the Permian. Permian conifers were very similar morphologically to their modern counterparts, and were adapted to stressed dry or seasonally dry climatic conditions.<ref name="Feng-2017" /> The increasing aridity, especially at low latitudes, facilitated the spread of conifers and their increasing prevalence throughout terrestrial ecosystems.<ref>{{cite journal |last1=Forte |first1=Giuseppa |last2=Kustatscher |first2=Evelyn |last3=Roghi |first3=Guido |last4=Preto |first4=Nereo |date=15 April 2018 |title=The Permian (Kungurian, Cisuralian) palaeoenvironment and palaeoclimate of the Tregiovo Basin, Italy: Palaeobotanical, palynological and geochemical investigations |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018217308805 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=495 |pages=186–204 |doi=10.1016/j.palaeo.2018.01.012 |bibcode=2018PPP...495..186F |access-date=22 December 2022 |archive-date=23 December 2022 |archive-url=https://web.archive.org/web/20221223070245/https://www.sciencedirect.com/science/article/abs/pii/S0031018217308805 |url-status=live |url-access=subscription }}</ref> [[Bennettitales]], which would go on to become in widespread the Mesozoic, first appeared during the Cisuralian in China.<ref name="Blomenkemper-2021">{{Cite journal|last1=Blomenkemper|first1=Patrick|last2=Bäumer|first2=Robert|last3=Backer|first3=Malte|last4=Abu Hamad|first4=Abdalla|last5=Wang|first5=Jun|last6=Kerp|first6=Hans|last7=Bomfleur|first7=Benjamin|date=2021|title=Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group|journal=Frontiers in Earth Science|language=English|volume=9|page=162|doi=10.3389/feart.2021.652699|bibcode=2021FrEaS...9..162B|issn=2296-6463|doi-access=free}}</ref> [[Lyginopteridales|Lyginopterids]], which had declined in the late Pennsylvanian and subsequently have a patchy fossil record, survived into the Late Permian in Cathaysia and equatorial east Gondwana.<ref>{{Cite journal|last1=Zavialova|first1=Natalia|last2=Blomenkemper|first2=Patrick|last3=Kerp|first3=Hans|last4=Hamad|first4=Abdalla Abu|last5=Bomfleur|first5=Benjamin|date=2021-03-04|title=A lyginopterid pollen organ from the upper Permian of the Dead Sea region|url=https://www.tandfonline.com/doi/full/10.1080/00173134.2020.1772360|journal=Grana|language=en|volume=60|issue=2|pages=81–96|doi=10.1080/00173134.2020.1772360|bibcode=2021Grana..60...81Z |s2cid=224931916|issn=0017-3134|access-date=2021-04-16|archive-date=2021-08-14|archive-url=https://web.archive.org/web/20210814143451/https://www.tandfonline.com/doi/full/10.1080/00173134.2020.1772360|url-status=live|url-access=subscription}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)