Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perron–Frobenius theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Algebraic graph theory=== The theorem has particular use in [[algebraic graph theory]]. The "underlying graph" of a nonnegative ''n''-square matrix is the graph with vertices numbered 1, ..., ''n'' and arc ''ij'' if and only if ''A<sub>ij</sub>'' ≠ 0. If the underlying graph of such a matrix is strongly connected, then the matrix is irreducible, and thus the theorem applies. In particular, the [[adjacency matrix]] of a [[strongly connected component|strongly connected graph]] is irreducible.<ref>{{cite book |author-link=Richard A. Brualdi |first1=Richard A. |last1=Brualdi |author-link2=H. J. Ryser |first2=Herbert J. |last2=Ryser |title=Combinatorial Matrix Theory |url=https://archive.org/details/combinatorialmat0000brua_x9u3 |url-access=registration |location=Cambridge |publisher=Cambridge UP |year=1992 |isbn=978-0-521-32265-2 }}</ref><ref>{{cite book |author-link=Richard A. Brualdi |first1=Richard A. |last1=Brualdi |first2=Dragos |last2=Cvetkovic |title=A Combinatorial Approach to Matrix Theory and Its Applications |publisher=CRC Press |location=Boca Raton, FL |year=2009 |isbn=978-1-4200-8223-4 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)