Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pluto
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Other factors ==== Numerical studies have shown that over millions of years, the general nature of the alignment between the orbits of Pluto and Neptune does not change.<ref name="huainn01" /><ref name="williams71" /> There are several other resonances and interactions that enhance Pluto's stability. These arise principally from two additional mechanisms (besides the 2:3 mean-motion resonance). First, Pluto's [[argument of perihelion]], the angle between the point where it crosses the ecliptic (or the [[invariant plane]]) and the point where it is closest to the Sun, [[libration|librates]] around 90°.<ref name="williams71" /> This means that when Pluto is closest to the Sun, it is at its farthest north of the plane of the Solar System, preventing encounters with Neptune. This is a consequence of the [[Kozai mechanism]],<ref name="huainn01" /> which relates the eccentricity of an orbit to its inclination to a larger perturbing body—in this case, Neptune. Relative to Neptune, the amplitude of libration is 38°, and so the angular separation of Pluto's perihelion to the orbit of Neptune is always greater than 52° {{nowrap|(90°–38°)}}. The closest such angular separation occurs every 10,000 years.<ref name="sp-345" /> Second, the longitudes of ascending nodes of the two bodies—the points where they cross the [[invariant plane]]—are in near-resonance with the above libration. When the two longitudes are the same—that is, when one could draw a straight line through both nodes and the Sun—Pluto's perihelion lies exactly at 90°, and hence it comes closest to the Sun when it is furthest north of Neptune's orbit. This is known as the ''1:1 superresonance''. All the [[Jovian planets]] (Jupiter, Saturn, Uranus, and Neptune) play a role in the creation of the superresonance.<ref name="huainn01" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)