Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polygon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Simple polygons==== {{further|Shoelace formula}} If the polygon is non-self-intersecting (that is, [[simple polygon|simple]]), the signed [[area (geometry)|area]] is :<math>A = \frac{1}{2} \sum_{i = 0}^{n - 1}( x_i y_{i + 1} - x_{i + 1} y_i) \quad \text {where } x_{n}=x_{0} \text{ and } y_n=y_{0}, </math> or, using [[determinant]]s :<math>16 A^{2} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \begin{vmatrix} Q_{i,j} & Q_{i,j+1} \\ Q_{i+1,j} & Q_{i+1,j+1} \end{vmatrix} , </math> where <math> Q_{i,j} </math> is the squared distance between <math>(x_i, y_i)</math> and <math>(x_j, y_j).</math><ref>B.Sz. Nagy, L. Rédey: Eine Verallgemeinerung der Inhaltsformel von Heron. Publ. Math. Debrecen 1, 42–50 (1949)</ref><ref>{{cite web |url = http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf |title = Calculating The Area And Centroid Of A Polygon |last = Bourke |first = Paul |date = July 1988 |access-date = 6 Feb 2013 |archive-date = 16 September 2012 |archive-url = https://web.archive.org/web/20120916104133/http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf |url-status = dead }}</ref> The signed area depends on the ordering of the vertices and of the [[orientation (vector space)|orientation]] of the plane. Commonly, the positive orientation is defined by the (counterclockwise) rotation that maps the positive {{mvar|x}}-axis to the positive {{mvar|y}}-axis. If the vertices are ordered counterclockwise (that is, according to positive orientation), the signed area is positive; otherwise, it is negative. In either case, the area formula is correct in [[absolute value]]. This is commonly called the ''[[shoelace formula]]'' or ''surveyor's formula''.<ref>{{cite journal |author=Bart Braden |title=The Surveyor's Area Formula |journal=The College Mathematics Journal |volume=17 |issue=4 |year=1986 |pages=326–337 |url=http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-url=https://web.archive.org/web/20121107190918/http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-date=2012-11-07 |doi=10.2307/2686282|jstor=2686282 }}</ref> The area ''A'' of a simple polygon can also be computed if the lengths of the sides, ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>n</sub>'' and the [[exterior angle]]s, ''θ''<sub>1</sub>, ''θ''<sub>2</sub>, ..., ''θ<sub>n</sub>'' are known, from: :<math>\begin{align}A = \frac12 ( a_1[a_2 \sin(\theta_1) + a_3 \sin(\theta_1 + \theta_2) + \cdots + a_{n-1} \sin(\theta_1 + \theta_2 + \cdots + \theta_{n-2})] \\ {} + a_2[a_3 \sin(\theta_2) + a_4 \sin(\theta_2 + \theta_3) + \cdots + a_{n-1} \sin(\theta_2 + \cdots + \theta_{n-2})] \\ {} + \cdots + a_{n-2}[a_{n-1} \sin(\theta_{n-2})] ). \end{align}</math> The formula was described by Lopshits in 1963.<ref name="lopshits">{{cite book |title=Computation of areas of oriented figures |author=A.M. Lopshits |publisher=D C Heath and Company: Boston, MA |others=translators: J Massalski and C Mills Jr. |year=1963}}</ref> If the polygon can be drawn on an equally spaced grid such that all its vertices are grid points, [[Pick's theorem]] gives a simple formula for the polygon's area based on the numbers of interior and boundary grid points: the former number plus one-half the latter number, minus 1. In every polygon with perimeter ''p'' and area ''A '', the [[isoperimetric inequality]] <math>p^2 > 4\pi A</math> holds.<ref>{{cite web| url = http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf| title = Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.}}</ref> For any two simple polygons of equal area, the [[Bolyai–Gerwien theorem]] asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area.<ref>Robbins, "Polygons inscribed in a circle", ''American Mathematical Monthly'' 102, June–July 1995.</ref> However, if the polygon is simple and cyclic then the sides ''do'' determine the area.<ref>{{cite journal|last=Pak|first=Igor|author-link=Igor Pak|doi=10.1016/j.aam.2004.08.006|issue=4|journal=[[Advances in Applied Mathematics]]|mr=2128993|pages=690–696|title=The area of cyclic polygons: recent progress on Robbins' conjectures|volume=34|year=2005|arxiv=math/0408104|s2cid=6756387}}</ref> Of all ''n''-gons with given side lengths, the one with the largest area is cyclic. Of all ''n''-gons with a given perimeter, the one with the largest area is regular (and therefore cyclic).<ref>Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums'' (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)