Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Factoring === All polynomials with coefficients in a [[unique factorization domain]] (for example, the integers or a [[field (mathematics)|field]]) also have a factored form in which the polynomial is written as a product of [[irreducible polynomial]]s and a constant. This factored form is unique up to the order of the factors and their multiplication by an invertible constant. In the case of the field of [[complex number]]s, the irreducible factors are linear. Over the [[real number]]s, they have the degree either one or two. Over the integers and the [[rational number]]s the irreducible factors may have any degree.<ref name=Barbeau-2003-pp80-82>{{harvnb|Barbeau|2003|pp=[https://books.google.com/books?id=CynRMm5qTmQC&pg=PA80 80]β2}}</ref> For example, the factored form of <math display="block"> 5x^3-5</math> is <math display="block">5(x - 1)\left(x^2 + x + 1\right)</math> over the integers and the reals, and <math display="block"> 5(x - 1)\left(x + \frac{1 + i\sqrt{3}}{2}\right)\left(x + \frac{1 - i\sqrt{3}}{2}\right)</math> over the complex numbers. The computation of the factored form, called ''factorization'' is, in general, too difficult to be done by hand-written computation. However, efficient [[factorization of polynomials|polynomial factorization]] [[algorithm]]s are available in most [[computer algebra system]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)