Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primary decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties of associated primes == Let <math>R</math> be a Noetherian ring. Then *The set of [[zero-divisor]]s on ''R'' is the same as the union of the associated primes of ''R'' (this is because the set of zerodivisors of ''R'' is the union of the set of annihilators of nonzero elements, the maximal elements of which are associated primes).<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 1, Corollary 3.}}</ref> * For the same reason, the union of the associated primes of an ''R''-module ''M'' is exactly the set of zero-divisors on ''M'', that is, an element ''r'' such that the endomorphism <math>m \mapsto rm, M \to M</math> is not injective.<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 1, Corollary 2.}}</ref> * Given a subset <math>\Phi \subset \operatorname{Ass}(M)</math>, ''M'' an ''R''-module , there exists a submodule <math>N \subset M</math> such that <math>\operatorname{Ass}(N) = \operatorname{Ass}(M) - \Phi</math> and <math>\operatorname{Ass}(M/N) = \Phi</math>.<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 1, Proposition 4.}}</ref> *Let <math>S \subset R</math> be a multiplicative subset, <math>M</math> an <math>R</math>-module and <math>\Phi</math> the set of all prime ideals of <math>R</math> not intersecting <math>S</math>. Then <math display="block">\mathfrak{p} \mapsto S^{-1}\mathfrak{p}, \, \operatorname{Ass}_R(M)\cap \Phi \to \operatorname{Ass}_{S^{-1}R}(S^{-1} M)</math> is a bijection.<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 1, no. 2, Proposition 5.}}</ref> Also, <math>\operatorname{Ass}_R(M)\cap \Phi = \operatorname{Ass}_R(S^{-1}M)</math>.<ref>{{harvnb|Matsumura|1970|loc=7.C Lemma}}</ref> * Any [[minimal prime ideal|prime ideal minimal]] with respect to containing an ideal ''J'' is in <math>\mathrm{Ass}_R(R/J).</math> These primes are precisely the isolated primes. * A module ''M'' over ''R'' has [[finite length]] if and only if ''M'' is finitely generated and <math>\mathrm{Ass}(M)</math> consists of maximal ideals.<ref>{{citation|title=Basic Algebra|first=P. M.|last=Cohn|publisher=Springer|year=2003|isbn=9780857294289|at=Exercise 10.9.7, p. 391|url=https://books.google.com/books?id=bOElBQAAQBAJ&pg=PA391}}.</ref> *Let <math>A \to B</math> be a ring homomorphism between Noetherian rings and ''F'' a ''B''-module that is [[flat module|flat]] over ''A''. Then, for each ''A''-module ''E'', :<math>\operatorname{Ass}_B(E \otimes_A F) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}(E)} \operatorname{Ass}_B(F/\mathfrak{p}F)</math>.<ref>{{harvnb|Bourbaki|loc=Ch. IV, § 2. Theorem 2.}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)