Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Project 25
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Conventional implementation == P25 systems do not have to resort to using in band signaling such as [[Continuous Tone-Coded Squelch System]] (CTCSS) tone or [[Digital-Coded Squelch]] (DCS) codes for access control. Instead they use what is called a Network Access Code (NAC) which is included outside of the digital voice frame. This is a 12-bit code that prefixes every packet of data sent, including those carrying voice transmissions. The NAC is a feature similar to CTCSS or DCS for analog radios. That is, radios can be programmed to only pass audio when receiving the correct NAC. NACs are programmed as a three-hexadecimal-digit code that is transmitted along with the digital signal being transmitted. Since the NAC is a three-hexadecimal-digit number (12 bits), there are 4,096 possible NACs for programming, far more than all analog methods combined. Three of the possible NACs have special functions: * 0x293 ($293) β the default NAC * 0xf7e ($F7E) β a receiver set for this NAC will pass audio on any decoded signal received * 0xf7f ($F7F) β a repeater receiver set for this NAC will allow all incoming decoded signals and the repeater transmitter will retransmit the received NAC.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)