Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantization (signal processing)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Quantization error models=== In the typical case, the original signal is much larger than one [[least significant bit]] (LSB). When this is the case, the quantization error is not significantly correlated with the signal and has an approximately [[uniform distribution (continuous)|uniform distribution]]. When rounding is used to quantize, the quantization error has a [[mean]] of zero and the [[root mean square]] (RMS) value is the [[standard deviation]] of this distribution, given by <math>\scriptstyle {\frac{1}{\sqrt{12}}}\mathrm{LSB}\ \approx\ 0.289\,\mathrm{LSB}</math>. When truncation is used, the error has a non-zero mean of <math>\scriptstyle {\frac{1}{2}}\mathrm{LSB}</math> and the RMS value is <math>\scriptstyle {\frac{1}{\sqrt{3}}}\mathrm{LSB}</math>. Although rounding yields less RMS error than truncation, the difference is only due to the static (DC) term of <math>\scriptstyle {\frac{1}{2}}\mathrm{LSB}</math><nowiki>. The RMS values of the AC error are exactly the same in both cases, so there is no special advantage of rounding over truncation in situations where the DC term of the error can be ignored (such as in AC-coupled systems). In either case, the standard deviation, as a percentage of the full signal range, changes by a factor of 2 for each 1-bit change in the number of quantization bits. The potential signal-to-quantization-noise power ratio therefore changes by 4, or </nowiki><math>\scriptstyle 10\cdot \log_{10}(4)</math>, approximately 6 dB per bit. At lower amplitudes the quantization error becomes dependent on the input signal, resulting in distortion. This distortion is created after the anti-aliasing filter, and if these distortions are above 1/2 the sample rate they will alias back into the band of interest. In order to make the quantization error independent of the input signal, the signal is dithered by adding noise to the signal. This slightly reduces signal-to-noise ratio, but can completely eliminate the distortion.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)