Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum logic gate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hadamard gate === {{further|Hadamard transform#Quantum computing applications|Hadamard matrix}}The Hadamard or Walsh-Hadamard gate, named after [[Jacques Hadamard]] ({{IPA|fr|adamaส|lang}}) and [[Joseph L. Walsh]], acts on a single qubit. It maps the basis states <math display="inline">|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}</math> and <math display="inline">|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}</math> (it creates an equal superposition state if given a computational basis state). The two states <math>(|0\rangle + |1\rangle)/\sqrt{2}</math> and <math>(|0\rangle - |1\rangle)/\sqrt{2}</math> are sometimes written <math>|+\rangle</math> and <math>|-\rangle</math> respectively. The Hadamard gate performs a rotation of <math>\pi</math> about the axis <math>(\hat{x}+\hat{z})/\sqrt{2}</math> at the [[Bloch sphere]], and is therefore [[Involutory matrix|involutory]]. It is represented by the [[Hadamard matrix]]: [[Image:Hadamard gate.svg|upright=0.8|thumb|Circuit representation of Hadamard gate]] :<math> H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} .</math> If the [[Hermitian matrix|Hermitian]] (so <math>H^{\dagger}=H^{-1}=H</math>) Hadamard gate is used to perform a [[Change of basis#Endomorphisms|change of basis]], it flips <math>\hat{x}</math> and <math>\hat{z}</math>. For example, <math>HZH=X</math> and <math>H\sqrt{X}\;H=\sqrt{Z}=S.</math> {{Anchor|Swap|SWAP|Swap gate}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)