Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ramsey's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Asymptotics === The inequality {{math|''R''(''r'', ''s'') ≤ ''R''(''r'' − 1, ''s'') + ''R''(''r'', ''s'' − 1)}} may be applied inductively to prove that :<math>R(r, s) \leq \binom{r + s - 2}{r - 1}. </math> In particular, this result, due to [[Paul Erdős|Erdős]] and [[George Szekeres|Szekeres]], implies that when {{math|1=''r'' = ''s''}}, :<math>R(s, s) \leq (1 + o(1))\frac{4^{s - 1}}{\sqrt{\pi s}}.</math> An exponential lower bound, :<math>R(s, s) \geq (1 + o(1)) \frac{s}{\sqrt{2} e} 2^{s/2},</math> was given by Erdős in 1947 and was instrumental in his introduction of the probabilistic method. There is a huge gap between these two bounds: for example, for {{math|1=''s'' = 10}}, this gives {{math|101 ≤ ''R''(10, 10) ≤ 48,620}}. Nevertheless, the exponential growth factors of either bound were not improved for a long time, and for the lower bound it still stands at {{math|{{sqrt|2}}}}. There is no known explicit construction producing an exponential lower bound. The best known lower and upper bounds for diagonal Ramsey numbers are :<math>[1 + o(1)] \frac{\sqrt{2} s}{e} 2^{\frac{s}{2}} \leq R(s, s) \leq s^{-(c \log s)/(\log \log s)} 4^s,</math> due to [[Joel Spencer|Spencer]] and [[David Conlon|Conlon]], respectively; a 2023 preprint by Campos, Griffiths, [[Robert Morris (mathematician)|Morris]] and [[Julian Sahasrabudhe|Sahasrabudhe]] claims to have made exponential progress using an algorithmic construction relying on a graph structure called a "[[Book (graph theory)|book]]",<ref name="arxiv23">{{cite arXiv |eprint=2303.09521 |class=math.CO |first1=Marcelo |last1=Campos |first2=Simon |last2=Griffiths |title=An exponential improvement for diagonal Ramsey |last3=Morris |first3=Robert |last4=Sahasrabudhe |first4=Julian |year=2023}}</ref><ref>{{Cite web |last=Sloman |first=Leila |date=2 May 2023 |title=A Very Big Small Leap Forward in Graph Theory |url=https://www.quantamagazine.org/after-nearly-a-century-a-new-limit-for-patterns-in-graphs-20230502/ |website=[[Quanta Magazine]]}}</ref> improving the upper bound to :<math>R(s,s) \leq (4-\varepsilon)^{s}\text{ and } R(s,t) \leq e^{-\delta t+o(s)}\binom{s+t}{t}.</math> with <math>\varepsilon=2^{-7}</math> and <math>\delta=50^{-1}</math>. A 2024 preprint<ref>{{cite arXiv |last1=Gupta |first1=Parth |title=Optimizing the CGMS upper bound on Ramsey numbers |date=2024-07-26 |eprint=2407.19026 |last2=Ndiaye |first2=Ndiame |last3=Norin |first3=Sergey |last4=Wei |first4=Louis|class=math.CO }}</ref> by Gupta, Ndiaye, Norin, and Wei claims an improvement of <math>\delta </math> to <math>-0.14e^{-1} \leq 20^{-1}</math>, and the diagonal Ramsey upper bound to <math>R(s,s) \leq \left(4e^{-0.14e^{-1}}\right)^{s + o(s)} = 3.7792...^{s+o(s)}</math> For the off-diagonal Ramsey numbers {{math|''R''(3, ''t'')}}, it is known that they are of order {{math|{{sfrac|''t''{{sup|2}}|log ''t''}}}}; this may be stated equivalently as saying that the smallest possible [[Independent set (graph theory)|independence number]] in an {{mvar|n}}-vertex [[triangle-free graph]] is :<math>\Theta \left (\sqrt{n\log n} \right ).</math> The upper bound for {{math|''R''(3, ''t'')}} is given by [[Miklós Ajtai|Ajtai]], [[János Komlós (mathematician)|Komlós]], and [[Endre Szemerédi|Szemerédi]],<ref>{{Cite journal |last1=Ajtai |first1=Miklós |last2=Komlós |first2=János |last3=Szemerédi |first3=Endre |date=1980-11-01 |title=A note on Ramsey numbers |journal=Journal of Combinatorial Theory, Series A |language=en |volume=29 |issue=3 |pages=354–360 |doi=10.1016/0097-3165(80)90030-8 |issn=0097-3165|doi-access=free }}</ref> the lower bound was obtained originally by [[Jeong Han Kim|Kim]],<ref>{{Citation |last1=Kim |first1=Jeong Han |title=The Ramsey Number ''R''(3,''t'') has order of magnitude ''t''<sup>2</sup>/log ''t'' |journal=Random Structures and Algorithms |volume=7 |issue=3 |pages=173–207 |year=1995 |citeseerx=10.1.1.46.5058 |doi=10.1002/rsa.3240070302 |author-link1=<!--Jeong Han Kim-->}}</ref> and the implicit constant was improved independently by Fiz Pontiveros, Griffiths and [[Robert Morris (mathematician)|Morris]],<ref>{{Cite web |title=The Triangle-Free Process and the Ramsey Number {{math|''R''(3,''k'')}} |url=https://bookstore.ams.org/memo-263-1274 |access-date=2023-06-27 |website=bookstore.ams.org}}</ref> and [[Tom Bohman|Bohman]] and [[Peter Keevash|Keevash]],<ref>{{Cite journal |last1=Bohman |first1=Tom |last2=Keevash |first2=Peter |date=2020-11-17 |title=Dynamic concentration of the triangle-free process |url=https://doi.org/10.1002/rsa.20973 |journal=Random Structures and Algorithms |language=en |volume=58 |issue=2 |pages=221–293 |doi=10.1002/rsa.20973 | arxiv=1302.5963 }}</ref> by analysing the triangle-free process. In general, studying the more general "{{math|''H''}}-free process" has set the best known asymptotic lower bounds for general off-diagonal Ramsey numbers,<ref>{{Cite journal |last1=Bohman |first1=Tom |last2=Keevash |first2=Peter |date=2010-08-01 |title=The early evolution of the H-free process |url=https://doi.org/10.1007/s00222-010-0247-x |journal=Inventiones Mathematicae |language=en |volume=181 |issue=2 |pages=291–336 |doi=10.1007/s00222-010-0247-x |issn=1432-1297| arxiv=0908.0429|bibcode=2010InMat.181..291B }}</ref> {{math|''R''(''s'', ''t'')}} :<math>c'_s \frac{t^{\frac{s + 1}{2}}}{(\log t)^{\frac{s + 1}{2} - \frac{1}{s - 2}}} \leq R(s, t) \leq c_s \frac{t^{s - 1}}{(\log t)^{s - 2}}.</math> In particular this gives an upper bound of <math>R(4, t) \leq c_s t^3(\log t)^{-2}</math>. Mattheus and Verstraete (2024)<ref>{{Cite journal | journal=Annals of Mathematics |last1=Mattheus |first1=Sam |last2=Verstraete |first2=Jacques |date=5 Mar 2024 |title=The asymptotics of r(4,t) |volume=199 |issue=2 |arxiv=2306.04007 |doi=10.4007/annals.2024.199.2.8}}</ref><ref>{{Cite web |last=Cepelewicz |first=Jordana |date=22 June 2023 |title=Mathematicians Discover Novel Way to Predict Structure in Graphs |url=https://www.quantamagazine.org/mathematicians-discover-new-way-to-predict-structure-in-graphs-20230622/ |website=[[Quanta Magazine]]}}</ref> gave a lower bound of <math>R(4, t) \geq c'_s t^3(\log t)^{-4}</math>, determining the asymptotics of <math>R(4, t)</math> up to logarithmic factors, and settling a question of Erdős, who offered 250 dollars for a proof that the lower limit has form <math>c'_s t^{3}(\log t)^{-d}</math>.<ref>{{Citation |last=Erdös |first=Paul |title=Problems and Results on Graphs and Hypergraphs: Similarities and Differences |date=1990 |url=https://doi.org/10.1007/978-3-642-72905-8_2 |work=Mathematics of Ramsey Theory |pages=12–28 |editor-last=Nešetřil |editor-first=Jaroslav |access-date=2023-06-27 |series=Algorithms and Combinatorics |volume=5 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-72905-8_2 |isbn=978-3-642-72905-8 |editor2-last=Rödl |editor2-first=Vojtěch}}</ref><ref>{{Cite web |title=Erdős Problems |url=https://www.erdosproblems.com/166 |access-date=2023-07-12 |website=www.erdosproblems.com}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)