Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ratio test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====2. Raabe's test==== This extension is due to [[Joseph Ludwig Raabe]]. Define: :<math>\rho_n \equiv n\left(\frac{a_n}{a_{n+1}}-1\right)</math> (and some extra terms, see Ali, Blackburn, Feld, Duris (none), Duris2){{Clarify|date=September 2024}} The series will:<ref name="Ali2008"/><ref name="Duris2009"/><ref name="Blackburn2012"/> * Converge when there exists a ''c>''1 such that <math>\rho_n \ge c</math> for all ''n>N''. * Diverge when <math>\rho_n \le 1</math> for all ''n>N''. * Otherwise, the test is inconclusive. For the limit version,<ref>{{mathworld|title=Raabe's Test|urlname=RaabesTest}}</ref> the series will: * Converge if <math>\rho=\lim_{n\to\infty}\rho_n>1</math> (this includes the case ''Ο'' = β) * Diverge if <math>\lim_{n\to\infty}\rho_n<1</math>. * If ''Ο'' = 1, the test is inconclusive. When the above limit does not exist, it may be possible to use limits superior and inferior.<ref name="Bromwich1908"/> The series will: * Converge if <math>\liminf_{n \to \infty} \rho_n > 1</math> * Diverge if <math>\limsup_{n \rightarrow \infty} \rho_n < 1</math> * Otherwise, the test is inconclusive. =====Proof of Raabe's test===== Defining <math>\rho_n \equiv n\left(\frac{a_n}{a_{n+1}}-1\right)</math>, we need not assume the limit exists; if <math>\limsup\rho_n<1</math>, then <math>\sum a_n</math> diverges, while if <math>\liminf \rho_n>1</math> the sum converges. The proof proceeds essentially by comparison with <math>\sum1/n^R</math>. Suppose first that <math>\limsup\rho_n<1</math>. Of course if <math>\limsup\rho_n<0</math> then <math>a_{n+1}\ge a_n</math> for large <math>n</math>, so the sum diverges; assume then that <math>0\le\limsup\rho_n<1</math>. There exists <math>R<1</math> such that <math>\rho_n\le R</math> for all <math>n\ge N</math>, which is to say that <math>a_{n}/a_{n+1}\le \left(1+\frac Rn\right)\le e^{R/n}</math>. Thus <math>a_{n+1}\ge a_ne^{-R/n}</math>, which implies that <math>a_{n+1}\ge a_Ne^{-R(1/N+\dots+1/n)}\ge ca_Ne^{-R\log(n)}=ca_N/n^R</math> for <math>n\ge N</math>; since <math>R<1</math> this shows that <math>\sum a_n</math> diverges. The proof of the other half is entirely analogous, with most of the inequalities simply reversed. We need a preliminary inequality to use in place of the simple <math>1+t<e^t</math> that was used above: Fix <math>R</math> and <math>N</math>. Note that <math>\log\left(1+\frac Rn\right)=\frac Rn+O\left(\frac 1{n^2}\right)</math>. So <math>\log\left(\left(1+\frac RN\right)\dots\left(1+\frac Rn\right)\right) =R\left(\frac 1N+\dots+\frac 1n\right)+O(1)=R\log(n)+O(1)</math>; hence <math>\left(1+\frac RN\right)\dots\left(1+\frac Rn\right)\ge cn^R</math>. Suppose now that <math>\liminf\rho_n>1</math>. Arguing as in the first paragraph, using the inequality established in the previous paragraph, we see that there exists <math>R>1</math> such that <math>a_{n+1}\le ca_Nn^{-R}</math> for <math>n\ge N</math>; since <math>R>1</math> this shows that <math>\sum a_n</math> converges.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)