Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reed–Solomon error correction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Systematic encoding procedure: The message as an initial sequence of values ==== There are alternative encoding procedures that produce a [[systematic code|systematic]] Reed–Solomon code. One method uses [[Lagrange interpolation]] to compute polynomial <math>p_m</math> such that <math display="block">p_m(a_i) = m_i \text{ for all } i\in\{0,\dots,k - 1\}. </math> Then <math>p_m</math> is evaluated at the other points <math>a_k, \dots, a_{n - 1}</math>. <math display="block">C(m) = \begin{bmatrix} p_m(a_0) \\ p_m(a_1) \\ \cdots \\ p_m(a_{n-1}) \end{bmatrix}</math> This function <math>C</math> is a linear mapping. To generate the corresponding systematic encoding matrix G, multiply the Vandermonde matrix A by the inverse of A's left square submatrix. <math display="block">G = (A\text{'s left square submatrix})^{-1} \cdot A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & g_{1,k+1} & \dots & g_{1,n} \\ 0 & 1 & 0 & \dots & 0 & g_{2,k+1} & \dots & g_{2,n} \\ 0 & 0 & 1 & \dots & 0 & g_{3,k+1} & \dots & g_{3,n} \\ \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 1 & g_{k,k+1} & \dots & g_{k,n} \end{bmatrix}</math> <math>C(m) = Gm</math> for the following <math>n \times k</math>-matrix <math>G</math> with elements from <math>F</math>: <math display="block">C(m) = Gm = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & g_{1,k+1} & \dots & g_{1,n} \\ 0 & 1 & 0 & \dots & 0 & g_{2,k+1} & \dots & g_{2,n} \\ 0 & 0 & 1 & \dots & 0 & g_{3,k+1} & \dots & g_{3,n} \\ \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 1 & g_{k,k+1} & \dots & g_{k,n} \end{bmatrix}\begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_{k-1} \end{bmatrix} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)