Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Regular polygon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Area===<!--This section is linked from [[Truncated icosahedron]]--> The area ''A'' of a convex regular ''n''-sided polygon having [[Edge (geometry)|side]] ''s'', [[circumscribed circle|circumradius]] ''R'', [[apothem]] ''a'', and [[perimeter]] ''p'' is given by<ref>{{cite web |url=http://www.mathopenref.com/polygonregulararea.html |title=Math Open Reference |access-date=4 Feb 2014}}</ref><ref>{{cite web |url=http://www.mathwords.com/a/area_regular_polygon.htm |title=Mathwords}}</ref> <math display="block">\begin{align} A &= \tfrac{1}{2}nsa \\ &= \tfrac{1}{2}pa \\ &= \tfrac{1}{4}ns^2\cot\left(\tfrac{\pi}{n}\right) \\ &= na^2\tan\left(\tfrac{\pi}{n}\right) \\ &= \tfrac{1}{2}nR^2\sin\left(\tfrac{2\pi}{n}\right) \end{align}</math> For regular polygons with side ''s'' = 1, circumradius ''R'' = 1, or apothem ''a'' = 1, this produces the following table:{{efn|1=Results for ''R'' = 1 and ''a'' = 1 obtained with [[Maple (software)|Maple]], using function definition: <syntaxhighlight lang="maple"> f := proc (n) options operator, arrow; [ [convert(1/4*n*cot(Pi/n), radical), convert(1/4*n*cot(Pi/n), float)], [convert(1/2*n*sin(2*Pi/n), radical), convert(1/2*n*sin(2*Pi/n), float), convert(1/2*n*sin(2*Pi/n)/Pi, float)], [convert(n*tan(Pi/n), radical), convert(n*tan(Pi/n), float), convert(n*tan(Pi/n)/Pi, float)] ] end proc </syntaxhighlight>The expressions for ''n'' = 16 are obtained by twice applying the [[tangent half-angle formula]] to tan(Ο/4)}} ([[trigonometric functions|Since <math>\scriptstyle \cot x \rightarrow 1/x</math> as <math>\scriptstyle x \rightarrow 0</math>]], the area when <math>\scriptstyle s = 1</math> tends to <math>\scriptstyle n^2/4\pi</math> as <math>\scriptstyle n</math> grows large.) {{Clear}} <div style="overflow:auto"> {| class=wikitable style="text-align:center;" |- ! rowspan="2" {{verth|Number<br/>of sides}} ! style="background:#ff9bac" colspan="2" | Area when side ''s'' = 1 ! style="background:#6dd7af" colspan="3" | Area when circumradius ''R'' = 1 ! style="background:#83c6ff" colspan="3" | Area when apothem ''a'' = 1 |- ! Exact ! Approxi{{shy}}mation ! Exact ! Approxi{{shy}}mation ! Relative to circum{{shy}}circle area ! Exact ! Approxi{{shy}}mation ! Relative to in{{shy}}circle area |- | ''n'' | <math>\scriptstyle \tfrac{n}{4}\cot\left(\tfrac{\pi}{n}\right)</math> || | <math>\scriptstyle \tfrac{n}{2}\sin\left(\tfrac{2\pi}{n}\right)</math> || || <math>\scriptstyle \tfrac{n}{2\pi}\sin\left(\tfrac{2\pi}{n}\right)</math> | <math>\scriptstyle n \tan\left(\tfrac{\pi}{n}\right)</math> || || <math>\scriptstyle \tfrac{n}{\pi}\tan\left(\tfrac{\pi}{n}\right)</math> |- | [[Equilateral triangle|3]] | {{tmath|\scriptstyle \tfrac{ \sqrt{3} }{4} }} || 0.433012702 | {{tmath|\scriptstyle \tfrac{3\sqrt{3} }{4} }} || 1.299038105 || 0.4134966714 | {{tmath|\scriptstyle 3\sqrt{3} }} || 5.196152424 || 1.653986686 |- | [[Square|4]] | 1 || 1.000000000 | 2 || 2.000000000 || 0.6366197722 | 4 || 4.000000000 || 1.273239544 |- | [[Regular pentagon|5]] | {{tmath|\scriptstyle \tfrac{1}{4}\sqrt{25 + 10\sqrt{5} } }} || 1.720477401 | {{tmath|\scriptstyle \tfrac{5}{4}\sqrt{\tfrac{1}{2}\left(5 + \sqrt{5}\right)} }} || 2.377641291 || 0.7568267288 | {{tmath|\scriptstyle 5\sqrt{5 - 2\sqrt{5} } }} || 3.632712640 || 1.156328347 |- | [[Regular hexagon|6]] | {{tmath|\scriptstyle \tfrac{3\sqrt{3} }{2} }} || 2.598076211 | {{tmath|\scriptstyle \tfrac{3\sqrt{3} }{2} }} || 2.598076211 || 0.8269933428 | {{tmath|\scriptstyle 2\sqrt{3} }} || 3.464101616 || 1.102657791 |- | [[Regular heptagon|7]] | || 3.633912444 | || 2.736410189 || 0.8710264157 | || 3.371022333 || 1.073029735 |- | [[Regular octagon|8]] | {{tmath|\scriptstyle 2 + 2\sqrt{2} }} || 4.828427125 | {{tmath|\scriptstyle 2\sqrt{2} }} || 2.828427125 || 0.9003163160 | {{tmath|\scriptstyle 8\left(\sqrt{2} - 1\right)}} || 3.313708500 || 1.054786175 |- | [[Regular enneagon|9]] | || 6.181824194 | || 2.892544244 || 0.9207254290 | || 3.275732109 || 1.042697914 |- | [[Regular decagon|10]] | {{tmath|\scriptstyle \tfrac{5}{2}\sqrt{5 + 2\sqrt{5} } }} || 7.694208843 | {{tmath|\scriptstyle \tfrac{5}{2}\sqrt{\tfrac{1}{2}\left(5 - \sqrt{5}\right)} }} || 2.938926262 || 0.9354892840 | {{tmath|\scriptstyle 2\sqrt{25 - 10\sqrt{5} } }} || 3.249196963 || 1.034251515 |- | [[Regular hendecagon|11]] | || 9.365639907 | || 2.973524496 || 0.9465022440 | || 3.229891423 || 1.028106371 |- | [[Regular dodecagon|12]] | {{tmath|\scriptstyle 6 + 3\sqrt{3} }} || 11.19615242 | 3 || 3.000000000 || 0.9549296586 | {{tmath|\scriptstyle 12\left(2 - \sqrt{3} \right)}} || 3.215390309 || 1.023490523 |- | [[Regular tridecagon|13]] | || 13.18576833 | || 3.020700617 || 0.9615188694 | || 3.204212220 || 1.019932427 |- | [[Regular tetradecagon|14]] | || 15.33450194 | || 3.037186175 || 0.9667663859 | || 3.195408642 || 1.017130161 |- | [[Regular pentadecagon|15]] | {{tmath|\scriptstyle \tfrac{15}{8}\left(\sqrt{15} + \sqrt{3} + \sqrt{2\left(5 + \sqrt{5} \right)} \right)}} || 17.64236291 | {{tmath|\scriptstyle \tfrac{15}{16}\left(\sqrt{15} + \sqrt{3} - \sqrt{10 - 2\sqrt{5} } \right)}} || 3.050524822 || 0.9710122088 | {{tmath|\scriptstyle \tfrac{15}{2}\left(3\sqrt{3} - \sqrt{15} - \sqrt{2\left(25 - 11\sqrt{5} \right)} \right)}} || 3.188348426 || 1.014882824 |- | [[Regular hexadecagon|16]] | {{tmath|\scriptstyle 4 \left(1 + \sqrt{2} + \sqrt{2 \left(2 + \sqrt{2} \right)} \right)}} || 20.10935797 | {{tmath|\scriptstyle 4\sqrt{2 - \sqrt{2} } }} || 3.061467460 || 0.9744953584 | {{tmath|\scriptstyle 16 \left(1 + \sqrt{2}\right)\left(\sqrt{2 \left(2 - \sqrt{2} \right)} - 1\right)}} || 3.182597878 || 1.013052368 |- | [[Regular heptadecagon|17]] | || 22.73549190 | || 3.070554163 || 0.9773877456 | || 3.177850752 || 1.011541311 |- | [[Regular octadecagon|18]] | || 25.52076819 | || 3.078181290 || 0.9798155361 | || 3.173885653 || 1.010279181 |- | [[Regular enneadecagon|19]] | || 28.46518943 | || 3.084644958 || 0.9818729854 | || 3.170539238 || 1.009213984 |- | [[Regular icosagon|20]] | {{tmath|\scriptstyle 5 \left(1 + \sqrt{5} + \sqrt{5 + 2\sqrt{5} } \right) }} || 31.56875757 | {{tmath|\scriptstyle \tfrac{5}{2}\left(\sqrt{5} - 1\right)}} || 3.090169944 || 0.9836316430 | {{tmath|\scriptstyle 20 \left(1 + \sqrt{5} -\sqrt{5 + 2\sqrt{5} } \right) }} || 3.167688806 || 1.008306663 |- | 100 | || 795.5128988 | || 3.139525977 || 0.9993421565 | || 3.142626605 || 1.000329117 |- | [[Regular chiliagon|1000]] | || 79577.20975 | || 3.141571983 || 0.9999934200 | || 3.141602989 || 1.000003290 |- | [[Regular myriagon|{{10^|4}}]] | || 7957746.893 | || 3.141592448 || 0.9999999345 | || 3.141592757 || 1.000000033 |- | [[Regular megagon|{{10^|6}}]] | || 79577471545 | || 3.141592654 || 1.000000000 | || 3.141592654 || 1.000000000 |} </div> [[File:Polygons comparison.png|thumb|right|400px|Comparison of sizes of regular polygons with the same edge length, from [[equilateral triangle|three]] to [[hexacontagon|sixty]] sides. The size increases without bound as the number of sides approaches infinity.]] Of all ''n''-gons with a given perimeter, the one with the largest area is regular.<ref>Chakerian, G.D. "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums'' (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)