Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Specific values== {{main|Particular values of the Riemann zeta function}} For any positive even integer {{math|2''n''}}, <math display="block"> \zeta(2n) = \frac{|{B_{2n}}|(2\pi)^{2n}}{2(2n)!},</math> where {{math|''B''<sub>2''n''</sub>}} is the {{math|2''n''}}-th [[Bernoulli number]]. For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraic {{mvar|K}}-theory of the integers; see [[Special values of L-functions|Special values of {{mvar|L}}-functions]]. For nonpositive integers, one has <math display="block">\zeta(-n)= -\frac{B_{n+1}}{n+1}</math> for {{math|''n'' ≥ 0}} (using the convention that {{math|''B''<sub>1</sub> {{=}} {{sfrac|1|2}}}}). In particular, {{mvar|ζ}} vanishes at the negative even integers because {{math|''B''<sub>''m''</sub> {{=}} 0}} for all odd {{mvar|m}} other than 1. These are the so-called "trivial zeros" of the zeta function. Via [[analytic continuation]], one can show that <math display="block">\zeta(-1) = -\tfrac{1}{12}</math> This gives a pretext for assigning a finite value to the divergent series [[1 + 2 + 3 + 4 + ⋯]], which has been used in certain contexts ([[Ramanujan summation]]) such as [[string theory]].<ref name='polchinski'>{{cite book |last=Polchinski |first=Joseph |author-link=Joseph Polchinski |series=String Theory |volume=I |title=An Introduction to the Bosonic String |publisher=Cambridge University Press |year=1998 |page=22 |isbn=978-0-521-63303-1}}</ref> Analogously, the particular value <math display="block">\zeta(0) = -\tfrac{1}{2}</math> can be viewed as assigning a finite result to the divergent series [[1 + 1 + 1 + 1 + ⋯]]. The value <math display="block">\zeta\bigl(\tfrac12\bigr) = -1.46035450880958681288\ldots</math> is employed in calculating kinetic boundary layer problems of linear kinetic equations.<ref>{{cite journal|first1=A. J. |last1=Kainz |first2=U. M. |last2=Titulaer |title=An accurate two-stream moment method for kinetic boundary layer problems of linear kinetic equations |pages=1855–1874 |journal=J. Phys. A: Math. Gen. |volume=25 |issue=7 |date=1992|bibcode=1992JPhA...25.1855K |doi=10.1088/0305-4470/25/7/026 }}</ref><ref>Further digits and references for this constant are available at {{OEIS2C|id=A059750}}.</ref> Although <math display="block">\zeta(1) = 1 + \tfrac{1}{2} + \tfrac{1}{3} + \cdots</math> diverges, its [[Cauchy principal value]] <math display="block"> \lim_{\varepsilon \to 0} \frac{\zeta(1+\varepsilon)+\zeta(1-\varepsilon)}{2}</math> exists and is equal to the [[Euler–Mascheroni constant]] {{math|''γ'' {{=}} 0.5772...}}.<ref name=Sondow1998>{{cite journal |last1=Sondow |first1=Jonathan |date=1998 |title=An antisymmetric formula for Euler's constant |journal=Mathematics Magazine |volume=71 |issue=3 |pages=219–220 |doi=10.1080/0025570X.1998.11996638 |access-date=2006-05-29 |url=http://home.earthlink.net/~jsondow/id8.html |archive-date=2011-06-04 |archive-url=https://web.archive.org/web/20110604123534/http://home.earthlink.net/~jsondow/id8.html}}</ref> The demonstration of the particular value <math display="block">\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}</math> is known as the [[Basel problem]]. The reciprocal of this sum answers the question: ''What is the probability that two numbers selected at random are [[coprime|relatively prime]]?''<ref>{{cite book|author-link=C. Stanley Ogilvy|first1=C. S. |last1=Ogilvy |first2=J. T. |last2=Anderson |title=Excursions in Number Theory |pages=29–35 |publisher=Dover Publications |date=1988 |isbn=0-486-25778-9}}</ref> The value <math display="block">\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \cdots = 1.202056903159594285399...</math> is [[Apéry's constant]]. Taking the limit <math>s \rightarrow +\infty</math> through the real numbers, one obtains <math>\zeta (+\infty) = 1</math>. But at [[complex infinity]] on the [[Riemann sphere]] the zeta function has an [[essential singularity]].<ref name=":0">{{Cite journal|last1=Steuding|first1=Jörn|last2=Suriajaya|first2=Ade Irma|date=2020-11-01|title=Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines|journal=Computational Methods and Function Theory|language=en|volume=20|issue=3|pages=389–401|doi=10.1007/s40315-020-00316-x|s2cid=216323223 |issn=2195-3724|quote=Theorem 2 implies that ζ has an essential singularity at infinity|doi-access=free|hdl=2324/4483207|hdl-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)