Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relationship with the associated real Hilbert space === {{See also|Complexification}} Assume that <math>H</math> is a complex Hilbert space with inner product <math>\langle \,\cdot\mid\cdot\, \rangle.</math> When the Hilbert space <math>H</math> is reinterpreted as a real Hilbert space then it will be denoted by <math>H_{\R},</math> where the (real) inner-product on <math>H_{\R}</math> is the real part of <math>H</math>'s inner product; that is: <math display=block>\langle x, y \rangle_{\R} := \operatorname{re} \langle x, y \rangle.</math> The norm on <math>H_{\R}</math> induced by <math>\langle \,\cdot\,, \,\cdot\, \rangle_{\R}</math> is equal to the original norm on <math>H</math> and the continuous dual space of <math>H_{\R}</math> is the set of all {{em|real}}-valued bounded <math>\R</math>-linear functionals on <math>H_{\R}</math> (see the article about the [[polarization identity]] for additional details about this relationship). Let <math>\psi_{\R} := \operatorname{re} \psi</math> and <math>\psi_{i} := \operatorname{im} \psi</math> denote the real and imaginary parts of a linear functional <math>\psi,</math> so that <math>\psi = \operatorname{re} \psi + i \operatorname{im} \psi = \psi_{\R} + i \psi_{i}.</math> The formula [[Real and imaginary parts of a linear functional|expressing a linear functional]] in terms of its real part is <math display=block>\psi(h) = \psi_{\R}(h) - i \psi_{\R} (i h) \quad \text{ for } h \in H,</math> where <math>\psi_{i}(h) = - i \psi_{\R} (i h)</math> for all <math>h \in H.</math> It follows that <math>\ker\psi_{\R} = \psi^{-1}(i \R),</math> and that <math>\psi = 0</math> if and only if <math>\psi_{\R} = 0.</math> It can also be shown that <math>\|\psi\| = \left\|\psi_{\R}\right\| = \left\|\psi_i\right\|</math> where <math>\left\|\psi_{\R}\right\| := \sup_{\|h\| \leq 1} \left|\psi_{\R}(h)\right|</math> and <math>\left\|\psi_i\right\| := \sup_{\|h\| \leq 1} \left|\psi_i(h)\right|</math> are the usual [[operator norm]]s. In particular, a linear functional <math>\psi</math> is bounded if and only if its real part <math>\psi_{\R}</math> is bounded. '''Representing a functional and its real part''' The Riesz representation of a continuous linear function <math>\varphi</math> on a complex Hilbert space is equal to the Riesz representation of its real part <math>\operatorname{re} \varphi</math> on its associated real Hilbert space. Explicitly, let <math>\varphi \in H^*</math> and as above, let <math>f_\varphi \in H</math> be the Riesz representation of <math>\varphi</math> obtained in <math>(H, \langle, \cdot, \cdot \rangle),</math> so it is the unique vector that satisfies <math>\varphi(x) = \left\langle f_{\varphi} \mid x \right\rangle</math> for all <math>x \in H.</math> The real part of <math>\varphi</math> is a continuous real linear functional on <math>H_{\R}</math> and so the Riesz representation theorem may be applied to <math>\varphi_{\R} := \operatorname{re} \varphi</math> and the associated real Hilbert space <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> to produce its Riesz representation, which will be denoted by <math>f_{\varphi_{\R}}.</math> That is, <math>f_{\varphi_{\R}}</math> is the unique vector in <math>H_{\R}</math> that satisfies <math>\varphi_{\R}(x) = \left\langle f_{\varphi_{\R}} \mid x \right\rangle_{\R}</math> for all <math>x \in H.</math> The conclusion is <math>f_{\varphi_{\R}} = f_{\varphi}.</math> This follows from the main theorem because <math>\ker\varphi_{\R} = \varphi^{-1}(i \R)</math> and if <math>x \in H</math> then <math display=block>\left\langle f_\varphi \mid x \right\rangle_{\R} = \operatorname{re} \left\langle f_\varphi \mid x \right\rangle = \operatorname{re} \varphi(x) = \varphi_{\R}(x)</math> and consequently, if <math>m \in \ker\varphi_{\R}</math> then <math>\left\langle f_{\varphi}\mid m \right\rangle_{\R} = 0,</math> which shows that <math>f_{\varphi} \in (\ker\varphi_{\R})^{\perp_{\R}}.</math> Moreover, <math>\varphi(f_\varphi) = \|\varphi\|^2</math> being a real number implies that <math>\varphi_{\R} (f_\varphi) = \operatorname{re} \varphi(f_\varphi) = \|\varphi\|^2.</math> In other words, in the theorem and constructions above, if <math>H</math> is replaced with its real Hilbert space counterpart <math>H_{\R}</math> and if <math>\varphi</math> is replaced with <math>\operatorname{re} \varphi</math> then <math>f_{\varphi} = f_{\operatorname{re} \varphi}.</math> This means that vector <math>f_{\varphi}</math> obtained by using <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> and the real linear functional <math>\operatorname{re} \varphi</math> is the equal to the vector obtained by using the origin complex Hilbert space <math>\left(H, \left\langle, \cdot, \cdot \right\rangle\right)</math> and original complex linear functional <math>\varphi</math> (with identical norm values as well). Furthermore, if <math>\varphi \neq 0</math> then <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}</math> where the kernel of <math>\varphi</math> is be a ''proper'' subspace of the kernel of its real part <math>\varphi_{\R}.</math> Assume now that <math>\varphi \neq 0.</math> Then <math>f_{\varphi} \not\in \ker\varphi_{\R}</math> because <math>\varphi_{\R}\left(f_{\varphi}\right) = \varphi\left(f_{\varphi}\right) = \|\varphi\|^2 \neq 0</math> and <math>\ker\varphi</math> is a proper subset of <math>\ker\varphi_{\R}.</math> The vector subspace <math>\ker \varphi</math> has real codimension <math>1</math> in <math>\ker\varphi_{\R},</math> while <math>\ker\varphi_{\R}</math> has {{em|real}} codimension <math>1</math> in <math>H_{\R},</math> and <math>\left\langle f_{\varphi}, \ker\varphi_{\R} \right\rangle_{\R} = 0.</math> That is, <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)