Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sigma-additive set function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===An additive function which is not σ-additive=== An example of an additive function which is not σ-additive is obtained by considering <math>\mu</math>, defined over the Lebesgue sets of the [[real number]]s <math>\R</math> by the formula <math display=block>\mu(A) = \lim_{k\to\infty} \frac{1}{k} \cdot \lambda(A \cap (0,k)),</math> where <math>\lambda</math> denotes the [[Lebesgue measure]] and <math>\lim</math> the [[Banach limit]]. It satisfies <math>0 \leq \mu(A) \leq 1</math> and if <math>\sup A < \infty</math> then <math>\mu(A) = 0.</math> One can check that this function is additive by using the linearity of the limit. That this function is not σ-additive follows by considering the sequence of disjoint sets <math display=block>A_n = [n,n + 1)</math> for <math>n = 0, 1, 2, \ldots</math> The union of these sets is the [[positive reals]], and <math>\mu</math> applied to the union is then one, while <math>\mu</math> applied to any of the individual sets is zero, so the sum of <math>\mu(A_n)</math> is also zero, which proves the counterexample.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)