Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sign function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == === Complex signum === <!-- [[Complex sign function]] and [[Complex signum function]] redirect here --> The signum function can be generalized to [[complex numbers]] as: <math display="block">\sgn z = \frac{z}{|z|} </math> for any complex number <math>z</math> except <math>z=0</math>. The signum of a given complex number <math>z</math> is the [[point (geometry)|point]] on the [[unit circle]] of the [[complex plane]] that is nearest to <math>z</math>. Then, for <math>z\ne 0</math>, <math display="block">\sgn z = e^{i\arg z}\,,</math> where <math>\arg</math> is the [[Argument (complex analysis)|complex argument function]]. For reasons of symmetry, and to keep this a proper generalization of the signum function on the reals, also in the complex domain one usually defines, for <math>z=0</math>: <math display="block">\sgn(0+0i)=0</math> Another generalization of the sign function for real and complex expressions is <math>\text{csgn}</math>,<ref>Maple V documentation. May 21, 1998</ref> which is defined as: <math display="block"> \operatorname{csgn} z= \begin{cases} 1 & \text{if } \mathrm{Re}(z) > 0, \\ -1 & \text{if } \mathrm{Re}(z) < 0, \\ \sgn \mathrm{Im}(z) & \text{if } \mathrm{Re}(z) = 0 \end{cases} </math> where <math>\text{Re}(z)</math> is the real part of <math>z</math> and <math>\text{Im}(z)</math> is the imaginary part of <math>z</math>. We then have (for <math>z\ne 0</math>): <math display="block">\operatorname{csgn} z = \frac{z}{\sqrt{z^2}} = \frac{\sqrt{z^2}}{z}. </math> === Polar decomposition of matrices === <!-- Was "Generalization to matrices" --> Thanks to the [[Polar decomposition]] theorem, a matrix <math>\boldsymbol A\in\mathbb K^{n\times n}</math> (<math>n\in\mathbb N</math> and <math>\mathbb K\in\{\mathbb R,\mathbb C\}</math>) can be decomposed as a product <math>\boldsymbol Q\boldsymbol P</math> where <math>\boldsymbol Q</math> is a unitary matrix and <math>\boldsymbol P</math> is a self-adjoint, or Hermitian, positive definite matrix, both in <math>\mathbb K^{n\times n}</math>. If <math>\boldsymbol A</math> is invertible then such a decomposition is unique and <math>\boldsymbol Q</math> plays the role of <math>\boldsymbol A</math>'s signum. A dual construction is given by the decomposition <math>\boldsymbol A=\boldsymbol S\boldsymbol R</math> where <math>\boldsymbol R</math> is unitary, but generally different than <math>\boldsymbol Q</math>. This leads to each invertible matrix having a unique left-signum <math>\boldsymbol Q</math> and right-signum <math>\boldsymbol R</math>. In the special case where <math>\mathbb K=\mathbb R,\ n=2,</math> and the (invertible) matrix <math>\boldsymbol A = \left[\begin{array}{rr}a&-b\\b&a\end{array}\right]</math>, which identifies with the (nonzero) complex number <math>a+\mathrm i b=c</math>, then the signum matrices satisfy <math>\boldsymbol Q=\boldsymbol P=\left[\begin{array}{rr}a&-b\\b&a\end{array}\right]/|c|</math> and identify with the complex signum of <math>c</math>, <math>\sgn c = c/|c|</math>. In this sense, polar decomposition generalizes to matrices the signum-modulus decomposition of complex numbers. === Signum as a generalized function === <!-- Was "Generalized signum function" --> At real values of <math>x</math>, it is possible to define a [[generalized function]]–version of the signum function, <math>\varepsilon (x)</math> such that <math>\varepsilon (x)^2=1</math> everywhere, including at the point <math>x=0</math>, unlike <math>\sgn</math>, for which <math>(\sgn 0)^2=0</math>. This generalized signum allows construction of the [[algebra of generalized functions]], but the price of such generalization is the loss of [[commutativity]]. In particular, the generalized signum anticommutes with the Dirac delta function<ref name="Algebra"> {{cite journal |author = Yu.M.Shirokov |title = Algebra of one-dimensional generalized functions |journal = [[Theoretical and Mathematical Physics]] |year = 1979 |volume = 39 |issue = 3 |pages = 471β477 |url = http://springerlink.metapress.com/content/w3010821x8267824/?p=5bb23f98d846495c808e0a2e642b983a&pi=3 |archive-url = https://archive.today/20121208232109/http://springerlink.metapress.com/content/w3010821x8267824/?p=5bb23f98d846495c808e0a2e642b983a&pi=3 |url-status = dead |archive-date = 2012-12-08 |doi = 10.1007/BF01017992 |bibcode = 1979TMP....39..471S }}</ref> <math display="block">\varepsilon (x) \delta(x)+\delta(x) \varepsilon(x) = 0 \, ;</math> in addition, <math>\varepsilon (x)</math> cannot be evaluated at <math>x=0</math>; and the special name, <math>\varepsilon</math> is necessary to distinguish it from the function <math>\sgn</math>. (<math>\varepsilon (0)</math> is not defined, but <math>\sgn 0=0</math>.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)