Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singular value decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation to eigenvalue decomposition === The singular value decomposition is very general in the sense that it can be applied to any {{tmath|m \times n}} matrix, whereas [[eigenvalue decomposition]] can only be applied to square [[Diagonalizable matrix|diagonalizable matrices]]. Nevertheless, the two decompositions are related. If {{tmath|\mathbf M}} has SVD {{tmath|\mathbf M {{=}} \mathbf U \mathbf \Sigma \mathbf V^*,}} the following two relations hold: <math display=block>\begin{align} \mathbf{M}^* \mathbf{M} &= \mathbf{V} \mathbf \Sigma^* \mathbf{U}^*\, \mathbf{U} \mathbf \Sigma \mathbf{V}^* = \mathbf{V} (\mathbf \Sigma^* \mathbf \Sigma) \mathbf{V}^*, \\[3mu] \mathbf{M} \mathbf{M}^* &= \mathbf{U} \mathbf \Sigma \mathbf{V}^*\, \mathbf{V} \mathbf \Sigma^* \mathbf{U}^* = \mathbf{U} (\mathbf \Sigma \mathbf \Sigma^*) \mathbf{U}^*. \end{align}</math> The right-hand sides of these relations describe the eigenvalue decompositions of the left-hand sides. Consequently: * The columns of {{tmath|\mathbf V}} (referred to as right-singular vectors) are [[eigenvectors]] of {{tmath|\mathbf M^* \mathbf M.}} * The columns of {{tmath|\mathbf U}} (referred to as left-singular vectors) are eigenvectors of {{tmath|\mathbf M \mathbf M^*.}} * The non-zero elements of {{tmath|\mathbf \Sigma}} (non-zero singular values) are the square roots of the non-zero [[eigenvalues]] of {{tmath|\mathbf M^* \mathbf M}} or {{tmath|\mathbf M \mathbf M^*.}} In the special case of {{tmath|\mathbf M}} being a [[normal matrix]], and thus also square, the [[Spectral theorem#Finite-dimensional case|spectral theorem]] ensures that it can be [[Unitary transform|unitarily]] [[Diagonalizable matrix|diagonalized]] using a basis of [[eigenvector]]s, and thus decomposed as {{tmath|\mathbf M {{=}} \mathbf U\mathbf D\mathbf U^*}} for some unitary matrix {{tmath|\mathbf U}} and diagonal matrix {{tmath|\mathbf D}} with complex elements {{tmath|\sigma_i}} along the diagonal. When {{tmath|\mathbf M}} is [[Positive-definite matrix|positive semi-definite]], {{tmath|\sigma_i}} will be non-negative real numbers so that the decomposition {{tmath|\mathbf M {{=}} \mathbf U \mathbf D \mathbf U^*}} is also a singular value decomposition. Otherwise, it can be recast as an SVD by moving the phase {{tmath|e^{i\varphi} }} of each {{tmath|\sigma_i}} to either its corresponding {{tmath|\mathbf V_i}} or {{tmath|\mathbf U_i.}} The natural connection of the SVD to non-normal matrices is through the [[polar decomposition]] theorem: {{tmath|\mathbf M {{=}} \mathbf S \mathbf R,}} where {{tmath|\mathbf S {{=}} \mathbf U \mathbf\Sigma \mathbf U^*}} is positive semidefinite and normal, and {{tmath|\mathbf R {{=}} \mathbf U \mathbf V^*}} is unitary. Thus, except for positive semi-definite matrices, the eigenvalue decomposition and SVD of {{tmath|\mathbf M,}} while related, differ: the eigenvalue decomposition is {{tmath|1= \mathbf M = \mathbf U \mathbf D \mathbf U^{-1},}} where {{tmath|\mathbf U}} is not necessarily unitary and {{tmath|\mathbf D}} is not necessarily positive semi-definite, while the SVD is {{tmath|1= \mathbf M = \mathbf U \mathbf \Sigma \mathbf V^*,}} where {{tmath|\mathbf \Sigma}} is diagonal and positive semi-definite, and {{tmath|\mathbf U}} and {{tmath|\mathbf V}} are unitary matrices that are not necessarily related except through the matrix {{tmath|\mathbf M.}} While only [[defective matrix|non-defective]] square matrices have an eigenvalue decomposition, any {{tmath|m \times n}} matrix has a SVD.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)