Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Smith normal form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Similarity == The Smith normal form can be used to determine whether or not matrices with entries over a common [[field (mathematics)|field]] <math>K</math> are [[similar (linear algebra)|similar]]. Specifically two matrices ''A'' and ''B'' are similar [[if and only if]] the [[characteristic matrix|characteristic matrices]] <math>xI-A</math> and <math>xI-B</math> have the same Smith normal form (working in the PID <math>K[x]</math>). For example, with :<math>\begin{align} A & {} =\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, & & \mbox{SNF}(xI-A) =\begin{bmatrix} 1 & 0 \\ 0 & (x-1)^2 \end{bmatrix} \\ B & {} =\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}, & & \mbox{SNF}(xI-B) =\begin{bmatrix} 1 & 0 \\ 0 & (x-1)^2 \end{bmatrix} \\ C & {} =\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, & & \mbox{SNF}(xI-C) =\begin{bmatrix} 1 & 0 \\ 0 & (x-1)(x-2) \end{bmatrix}. \end{align}</math> ''A'' and ''B'' are similar because the Smith normal form of their characteristic matrices match, but are not similar to ''C'' because the Smith normal form of the characteristic matrices do not match.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)