Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral radius
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Gelfand's formula== Gelfand's formula, named after [[Israel Gelfand]], gives the spectral radius as a limit of matrix norms. === Theorem === For any [[matrix norm]] {{math|{{!!}}β {{!!}},}} we have<ref>The formula holds for any [[Banach algebra]]; see Lemma IX.1.8 in {{harvnb|Dunford|Schwartz|1963}} and {{harvnb|Lax|2002|pp=195β197}}</ref> :<math>\rho(A)=\lim_{k \to \infty} \left \|A^k \right \|^{\frac{1}{k}}</math>. Moreover, in the case of a [[matrix norm|consistent]] matrix norm <math>\lim_{k \to \infty} \left \|A^k \right \|^{\frac{1}{k}}</math> approaches <math>\rho(A)</math> from above (indeed, in that case <math>\rho(A) \leq \left \|A^k \right \|^{\frac{1}{k}}</math> for all <math>k</math>). ===Proof=== For any {{math|''Ξ΅'' > 0}}, let us define the two following matrices: :<math>A_{\pm}= \frac{1}{\rho(A) \pm\varepsilon}A.</math> Thus, :<math>\rho \left (A_{\pm} \right ) = \frac{\rho(A)}{\rho(A) \pm \varepsilon}, \qquad \rho (A_+) < 1 < \rho (A_-).</math> We start by applying the previous theorem on limits of power sequences to {{math|''A''<sub>+</sub>}}: :<math>\lim_{k \to \infty} A_+^k=0.</math> This shows the existence of {{math|''N''<sub>+</sub> β '''N'''}} such that, for all {{math|''k'' β₯ ''N''<sub>+</sub>}}, :<math>\left\|A_+^k \right \| < 1.</math> Therefore, :<math>\left \|A^k \right \|^{\frac{1}{k}} < \rho(A)+\varepsilon.</math> Similarly, the theorem on power sequences implies that <math>\|A_-^k\|</math> is not bounded and that there exists {{math|''N''<sub>β</sub> β '''N'''}} such that, for all {{math|''k'' β₯ ''N''<sub>β</sub>}}, :<math>\left\|A_-^k \right \| > 1.</math> Therefore, :<math>\left\|A^k \right\|^{\frac{1}{k}} > \rho(A)-\varepsilon.</math> Let {{math|''N'' {{=}} max{''N''<sub>+</sub>, ''N''<sub>β</sub>}}}. Then, :<math>\forall \varepsilon>0\quad \exists N\in\mathbf{N} \quad \forall k\geq N \quad \rho(A)-\varepsilon < \left \|A^k \right \|^{\frac{1}{k}} < \rho(A)+\varepsilon,</math> that is, :<math>\lim_{k \to \infty} \left \|A^k \right \|^{\frac{1}{k}} = \rho(A).</math> This concludes the proof. ===Corollary=== Gelfand's formula yields a bound on the spectral radius of a product of commuting matrices: if <math>A_1, \ldots, A_n</math> are matrices that all commute, then :<math>\rho(A_1 \cdots A_n) \leq \rho(A_1) \cdots \rho(A_n).</math> ===Numerical example=== [[File:Gelfand's formula for a 3x3 matrix.svg|thumb|The convergence of all 3 matrix norms to the spectral radius.]] Consider the matrix :<math>A=\begin{bmatrix} 9 & -1 & 2\\ -2 & 8 & 4\\ 1 & 1 & 8 \end{bmatrix}</math> whose eigenvalues are {{math|5, 10, 10}}; by definition, {{math|''Ο''(''A'') {{=}} 10}}. In the following table, the values of <math>\|A^k\|^{\frac{1}{k}}</math> for the four most used norms are listed versus several increasing values of k (note that, due to the particular form of this matrix,<math>\|.\|_1=\|.\|_\infty</math>):
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)