Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sphere packing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Touching pairs, triplets, and quadruples== The [[contact graph]] of an arbitrary finite packing of unit balls is the graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. The cardinality of the edge set of the contact graph gives the number of touching pairs, the number of 3-cycles in the contact graph gives the number of touching triplets, and the number of tetrahedrons in the contact graph gives the number of touching quadruples (in general for a contact graph associated with a sphere packing in ''n'' dimensions that the cardinality of the set of ''n''-simplices in the contact graph gives the number of touching (''n'' + 1)-tuples in the sphere packing). In the case of 3-dimensional Euclidean space, non-trivial upper bounds on the number of touching pairs, triplets, and quadruples<ref>{{cite journal| last1 = Bezdek | first1 = Karoly | last2 = Reid | first2 = Samuel | title=Contact Graphs of Sphere Packings Revisited | year = 2013 |arxiv=1210.5756 |journal=Journal of Geometry |volume = 104 |issue = 1 | pages = 57β83 |doi = 10.1007/s00022-013-0156-4| s2cid = 14428585 }}</ref> were proved by [[Karoly Bezdek]] and Samuel Reid at the University of Calgary. The problem of finding the arrangement of ''n'' identical spheres that maximizes the number of contact points between the spheres is known as the "sticky-sphere problem". The maximum is known for ''n'' β€ 11, and only conjectural values are known for larger ''n''.<ref>{{Cite web|date=2017-02-06|title=The Science of Sticky Spheres|url=https://www.americanscientist.org/article/the-science-of-sticky-spheres|access-date=2020-07-14|website=American Scientist|language=en}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)