Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical cap
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == === Sections of other solids === The '''spheroidal dome''' is obtained by sectioning off a portion of a [[spheroid]] so that the resulting dome is [[circular symmetry|circularly symmetric]] (having an axis of rotation), and likewise the [[ellipsoidal dome]] is derived from the [[ellipsoid]]. === Hyperspherical cap === Generally, the <math>n</math>-dimensional volume of a hyperspherical cap of height <math>h</math> and radius <math>r</math> in <math>n</math>-dimensional Euclidean space is given by:<ref name="S-Li">{{cite journal|title=Concise Formulas for the Area and Volume of a Hyperspherical Cap|first1=S.|last1=Li|journal=Asian Journal of Mathematics and Statistics| year=2011| pages=66-70|url=https://docsdrive.com/pdfs/ansinet/ajms/2011/66-70.pdf}}</ref> <math display="block">V = \frac{\pi ^ {\frac{n-1}{2}}\, r^{n}}{\,\Gamma \left ( \frac{n+1}{2} \right )} \int_{0}^{\arccos\left(\frac{r-h}{r}\right)}\sin^n (\theta) \,\mathrm{d}\theta</math> where <math>\Gamma</math> (the [[gamma function]]) is given by <math> \Gamma(z) = \int_0^\infty t^{z-1} \mathrm{e}^{-t}\,\mathrm{d}t </math>. The formula for <math>V</math> can be expressed in terms of the volume of the unit [[n-ball]] <math display="inline">C_n = \pi^{n/2} / \Gamma[1+\frac{n}{2}]</math> and the [[hypergeometric function]] <math>{}_{2}F_{1}</math> or the [[regularized incomplete beta function]] <math>I_x(a,b)</math> as <math display="block">V = C_{n} \, r^{n} \left( \frac{1}{2}\, - \,\frac{r-h}{r} \,\frac{\Gamma[1+\frac{n}{2}]}{\sqrt{\pi}\,\Gamma[\frac{n+1}{2}]} {\,\,}_{2}F_{1}\left(\tfrac{1}{2},\tfrac{1-n}{2};\tfrac{3}{2};\left(\tfrac{r-h}{r}\right)^{2}\right)\right) = \frac{1}{2}C_{n} \, r^n I_{(2rh-h^2)/r^2} \left(\frac{n+1}{2}, \frac{1}{2} \right),</math> and the area formula <math>A</math> can be expressed in terms of the area of the unit n-ball <math display="inline">A_{n}={2\pi^{n/2}/\Gamma[\frac{n}{2}]}</math> as <math display="block">A =\frac{1}{2}A_{n} \, r^{n-1} I_{(2rh-h^2)/r^2} \left(\frac{n-1}{2}, \frac{1}{2} \right),</math> where <math>0\le h\le r </math>. A. Chudnov<ref name="Minimax-86">{{cite journal|title=On minimax signal generation and reception algorithms (engl. transl.) | first1=Alexander M.|last1=Chudnov|journal=Problems of Information Transmission| year=1986| volume=22| number=4| pages=49β54|url=https://www.researchgate.net/publication/269008140_Minimax_signal_generation_and_reception_algorithms}}</ref> derived the following formulas: <math display="block"> A = A_n r^{n-1} p_ { n-2 } (q),\, V = C_n r^{n} p_n (q) , </math> where <math display="block"> q = 1-h/r (0 \le q \le 1 ), p_n (q) =(1-G_n(q)/G_n(1))/2 , </math> <math display="block"> G _n(q)= \int _0^q (1-t^2) ^ { (n-1) /2 } dt .</math> For odd <math> n=2k+1 </math>: <math display="block"> G_n(q) = \sum_{i=0}^k (-1) ^i \binom k i \frac {q^{2i+1}} {2i+1} .</math> ==== Asymptotics ==== If <math> n \to \infty </math> and <math>q\sqrt n = \text{const.}</math>, then <math> p_n (q) \to 1- F({q \sqrt n}) </math> where <math> F() </math> is the integral of the [[standard normal distribution]].<ref name= "Game-91">{{cite journal|title=Game-theoretical problems of synthesis of signal generation and reception algorithms (engl. transl.)|first1=Alexander M|last1=Chudnov|journal=Problems of Information Transmission | year=1991 | volume=27|number=3|pages=57β65|url=https://www.researchgate.net/publication/268648510_Game-theoretical_problems_of_synthesis_of_signal_generation_and_reception_algorithms}}</ref> A more quantitative bound is <math> A/(A_n r^{n-1}) = n^{\Theta(1)} \cdot [(2-h/r)h/r]^{n/2} </math>. For large caps (that is when <math>(1-h/r)^4\cdot n = O(1)</math> as <math>n\to \infty</math>), the bound simplifies to <math>n^{\Theta(1)} \cdot e^{-(1-h/r)^2n/2} </math>.<ref>{{cite conference |last1= Becker |first1= Anja |last2= Ducas |first2= LΓ©o |last3= Gama |first3= Nicolas |last4= Laarhoven |first4= Thijs |date= 10 January 2016 |title= New directions in nearest neighbor searching with applications to lattice sieving |conference= Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '16), Arlington, Virginia |editor-last= Krauthgamer |editor-first= Robert |publisher= Society for Industrial and Applied Mathematics |publication-place= Philadelphia |pages= 10β24 |isbn= 978-1-61197-433-1 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)