Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical harmonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Spherical harmonics in Cartesian form == The complex spherical harmonics <math>Y_\ell^m</math> give rise to the [[solid harmonics]] by extending from <math>S^2</math> to all of <math>\R^3</math> as a [[homogeneous function]] of degree <math>\ell</math>, i.e. setting <math display="block">R_\ell^m(v) := \|v\|^\ell Y_\ell^m\left(\frac{v}{\|v\|}\right)</math> It turns out that <math>R_\ell^m</math> is basis of the space of harmonic and [[homogeneous polynomial]]s of degree <math>\ell</math>. More specifically, it is the (unique up to normalization) [[Gelfand-Tsetlin-basis]] of this representation of the rotational group <math>SO(3)</math> and an [[Solid harmonics#Complex form|explicit formula]] for <math>R_\ell^m</math> in cartesian coordinates can be derived from that fact. ===The Herglotz generating function=== If the quantum mechanical convention is adopted for the <math>Y_{\ell}^m: S^2 \to \Complex</math>, then <math display="block"> e^{v{\mathbf a}\cdot{\mathbf r}} = \sum_{\ell=0}^{\infty} \sum_{m = -\ell}^{\ell} \sqrt{\frac{4\pi}{2\ell +1}} \frac{r^{\ell} v^{\ell} {\lambda^m}}{\sqrt{(\ell +m)!(\ell-m)!}} Y_{\ell}^m (\mathbf{r}/r). </math> Here, <math>\mathbf r</math> is the vector with components <math>(x, y, z) \in \R^3</math>, <math>r = |\mathbf{r}|</math>, and <math display="block"> {\mathbf a} = {\mathbf{\hat z}} - \frac{\lambda}{2}\left({\mathbf{\hat x}} + i {\mathbf{\hat y}}\right) + \frac{1}{2\lambda}\left({\mathbf{\hat x}} - i {\mathbf{\hat y}}\right). </math> <math>\mathbf a </math> is a vector with complex coordinates: <math>\mathbf a =[\frac{1}{2}(\frac{1}{\lambda}-\lambda),-\frac{i}{2 }(\frac{1}{\lambda} +\lambda),1 ] .</math> The essential property of <math>\mathbf a</math> is that it is null: <math display="block">\mathbf a \cdot \mathbf a = 0.</math> It suffices to take <math>v</math> and <math>\lambda</math> as real parameters. In naming this generating function after [[Gustav Herglotz|Herglotz]], we follow {{harvnb|Courant|Hilbert|1962|loc= §VII.7}}, who credit unpublished notes by him for its discovery. Essentially all the properties of the spherical harmonics can be derived from this generating function.<ref>See, e.g., Appendix A of Garg, A., Classical Electrodynamics in a Nutshell (Princeton University Press, 2012).</ref> An immediate benefit of this definition is that if the vector <math>\mathbf r</math> is replaced by the quantum mechanical spin vector operator <math>\mathbf J</math>, such that <math>\mathcal{Y}_{\ell}^m({\mathbf J})</math> is the operator analogue of the [[Solid harmonics|solid harmonic]] <math>r^{\ell}Y_{\ell}^m (\mathbf{r}/r)</math>,<ref>{{Citation| last1=Li|first1=Feifei| last2=Braun|first2=Carol| last3=Garg|first3=Anupam|title=The Weyl-Wigner-Moyal Formalism for Spin|journal=Europhysics Letters|year=2013|volume=102|issue=6| page=60006|doi=10.1209/0295-5075/102/60006|arxiv=1210.4075|bibcode=2013EL....10260006L|s2cid=119610178}}</ref> one obtains a generating function for a standardized set of [[spherical tensor operator]]s, <math>\mathcal{Y}_{\ell}^m({\mathbf J})</math>: <math display="block"> e^{v{\mathbf a}\cdot{\mathbf J}} = \sum_{\ell=0}^{\infty} \sum_{m = -\ell}^{\ell} \sqrt{\frac{4\pi}{2\ell +1}} \frac{v^{\ell} {\lambda^m}}{\sqrt{(\ell +m)!(\ell-m)!}} {\mathcal Y}_{\ell}^m({\mathbf J}). </math> The parallelism of the two definitions ensures that the <math>\mathcal{Y}_{\ell}^m</math>'s transform under rotations (see below) in the same way as the <math>Y_{\ell}^m</math>'s, which in turn guarantees that they are spherical tensor operators, <math>T^{(k)}_q</math>, with <math>k = {\ell}</math> and <math>q = m</math>, obeying all the properties of such operators, such as the [[Clebsch-Gordan coefficients|Clebsch-Gordan]] composition theorem, and the [[Wigner-Eckart theorem]]. They are, moreover, a standardized set with a fixed scale or normalization. {{see also|Spherical basis}} ===Separated Cartesian form=== The Herglotzian definition yields polynomials which may, if one wishes, be further factorized into a polynomial of <math>z</math> and another of <math>x</math> and <math>y</math>, as follows (Condon–Shortley phase): <math display="block"> r^\ell\, \begin{pmatrix} Y_\ell^{m} \\ Y_\ell^{-m} \end{pmatrix} = \left[\frac{2\ell+1}{4\pi}\right]^{1/2} \bar{\Pi}^m_\ell(z) \begin{pmatrix} \left(-1\right)^m (A_m + i B_m) \\ (A_m - i B_m) \end{pmatrix} , \qquad m > 0. </math> and for {{math|1=''m'' = 0}}: <math display="block">r^\ell\,Y_\ell^{0} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \bar{\Pi}^0_\ell .</math> Here <math display="block">A_m(x,y) = \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \cos \left((m-p) \frac{\pi}{2}\right),</math> <math display="block">B_m(x,y) = \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \sin \left((m-p) \frac{\pi}{2}\right),</math> and <math display="block"> \bar{\Pi}^m_\ell(z) = \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} (-1)^k 2^{-\ell} \binom{\ell}{k}\binom{2\ell-2k}{\ell} \frac{(\ell-2k)!}{(\ell-2k-m)!} \; r^{2k}\; z^{\ell-2k-m}. </math> For <math>m = 0</math> this reduces to <math display="block"> \bar{\Pi}^0_\ell(z) = \sum_{k=0}^{\left \lfloor \ell/2\right \rfloor} (-1)^k 2^{-\ell} \binom{\ell}{k}\binom{2\ell-2k}{\ell} \; r^{2k}\; z^{\ell-2k}. </math> The factor <math>\bar{\Pi}_\ell^m(z)</math> is essentially the associated Legendre polynomial <math>P_\ell^m(\cos\theta)</math>, and the factors <math>(A_m \pm i B_m)</math> are essentially <math>e^{\pm i m\varphi}</math>. ====Examples==== Using the expressions for <math>\bar{\Pi}_\ell^m(z)</math>, <math>A_m(x,y)</math>, and <math>B_m(x,y)</math> listed explicitly above we obtain: <math display="block"> Y^1_3 = - \frac{1}{r^3} \left[\tfrac{7}{4\pi}\cdot \tfrac{3}{16} \right]^{1/2} \left(5z^2-r^2\right) \left(x+iy\right) = - \left[\tfrac{7}{4\pi}\cdot \tfrac{3}{16}\right]^{1/2} \left(5\cos^2\theta-1\right) \left(\sin\theta e^{i\varphi}\right) </math> <math display="block"> Y^{-2}_4 = \frac{1}{r^4} \left[\tfrac{9}{4\pi}\cdot\tfrac{5}{32}\right]^{1/2} \left(7z^2-r^2\right) \left(x-iy\right)^2 = \left[\tfrac{9}{4\pi}\cdot\tfrac{5}{32}\right]^{1/2} \left(7 \cos^2\theta -1\right) \left(\sin^2\theta e^{-2 i \varphi}\right) </math> It may be verified that this agrees with the function listed [[Table of spherical harmonics#ℓ = 3|here]] and [[Table of spherical harmonics#ℓ = 4|here]]. ====Real forms==== Using the equations above to form the real spherical harmonics, it is seen that for <math>m>0</math> only the <math>A_m</math> terms (cosines) are included, and for <math>m<0</math> only the <math>B_m</math> terms (sines) are included: <math display="block"> r^\ell\, \begin{pmatrix} Y_{\ell m} \\ Y_{\ell -m} \end{pmatrix} = \sqrt{\frac{2\ell+1}{2\pi}} \bar{\Pi}^m_\ell(z) \begin{pmatrix} A_m \\ B_m \end{pmatrix} , \qquad m > 0. </math> and for ''m'' = 0: <math display="block"> r^\ell\,Y_{\ell 0} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \bar{\Pi}^0_\ell . </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)