Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stable distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Simulation of stable variates == There are no analytic expressions for the inverse <math>F^{-1}(x)</math> nor the CDF <math>F(x)</math> itself, so the inversion method cannot be used to generate stable-distributed variates.<ref name ="Nolan 1997">{{Cite journal|title = Numerical calculation of stable densities and distribution functions |journal = Communications in Statistics. Stochastic Models| date = 1997 | issn = 0882-0287 |pages = 759–774 | volume = 13 |issue = 4| doi = 10.1080/15326349708807450 | first = John P. | last = Nolan}}</ref><ref name=":4">{{Cite journal|last=Lihn|first=Stephen| date=2017| title=A Theory of Asset Return and Volatility Under Stable Law and Stable Lambda Distribution| url=https://ssrn.com/abstract=3046732| journal=SSRN}}</ref> Other standard approaches like the rejection method would require tedious computations. An elegant and efficient solution was proposed by Chambers, Mallows and Stuck (CMS),<ref>{{Cite journal|title = A Method for Simulating Stable Random Variables|journal = Journal of the American Statistical Association|date = 1976|issn = 0162-1459| pages = 340–344| volume = 71 |issue = 354| doi = 10.1080/01621459.1976.10480344 |first1 = J. M.|last1 = Chambers|first2 = C. L.|last2 = Mallows|first3 = B. W.|last3 = Stuck}}</ref> who noticed that a certain integral formula<ref>{{Cite book|title = One-Dimensional Stable Distributions|last = Zolotarev | first = V. M.|publisher = American Mathematical Society|year = 1986|isbn = 978-0-8218-4519-6|url-access = registration|url = https://archive.org/details/onedimensionalst00zolo_0}}</ref> yielded the following algorithm:<ref>{{Cite book | title = Heavy-Tailed Distributions in VaR Calculations|publisher = Springer Berlin Heidelberg| date = 2012|isbn = 978-3-642-21550-6|pages = 1025–1059|series = Springer Handbooks of Computational Statistics | doi = 10.1007/978-3-642-21551-3_34 |first1 = Adam | last1 = Misiorek|first2 = Rafał|last2 = Weron | url = http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_10_05.pdf | editor-first = James E.|editor-last = Gentle | editor-first2 = Wolfgang Karl| editor-last2 = Härdle| editor-first3 = Yuichi |editor-last3 = Mori}}</ref> * generate a random variable <math>U</math> uniformly distributed on <math>\left (-\tfrac{\pi}{2},\tfrac{\pi}{2} \right )</math> and an independent [[Exponential_distribution#Random_variate_generation|exponential random variable]] <math>W</math> with mean 1; * for <math>\alpha\ne 1</math> compute: <math display="block">X = \left (1+\zeta^2 \right )^\frac{1}{2\alpha} \frac{\sin ( \alpha(U+\xi)) }{ (\cos(U))^{\frac{1}{\alpha}}} \left (\frac{\cos (U - \alpha(U+\xi)) }{W} \right )^\frac{1-\alpha}{\alpha},</math> * for <math>\alpha=1</math> compute: <math display="block">X = \frac{1}{\xi}\left\{\left(\frac{\pi}{2}+\beta U \right)\tan U- \beta\log\left(\frac{\frac{\pi}{2} W\cos U}{\frac{\pi}{2}+\beta U}\right)\right\},</math> where <math display="block">\zeta = -\beta\tan\frac{\pi\alpha}{2}, \qquad \xi =\begin{cases} \frac{1}{\alpha} \arctan(-\zeta) & \alpha \ne 1 \\ \frac{\pi}{2} & \alpha=1 \end{cases}</math> This algorithm yields a random variable <math>X\sim S_\alpha(\beta,1,0)</math>. For a detailed proof see.<ref>{{Cite journal| title = On the Chambers-Mallows-Stuck method for simulating skewed stable random variables| journal = Statistics & Probability Letters|date = 1996|pages = 165–171 |volume = 28|issue = 2|doi = 10.1016/0167-7152(95)00113-1| first = Rafał |last = Weron | citeseerx = 10.1.1.46.3280| s2cid = 9500064}}</ref> To simulate a stable random variable for all admissible values of the parameters <math>\alpha</math>, <math>c</math>, <math>\beta</math> and <math>\mu</math> use the following property: If <math>X \sim S_\alpha(\beta,1,0)</math> then <math display="block">Y = \begin{cases} c X+\mu & \alpha \ne 1 \\ c X+\frac{2}{\pi}\beta c\log c + \mu & \alpha = 1 \end{cases}</math> is <math>S_\alpha(\beta,c,\mu)</math>. For <math>\alpha = 2</math> (and <math>\beta = 0</math>) the CMS method reduces to the well known [[Box–Muller transform|Box-Muller transform]] for generating [[Normal distribution|Gaussian]] random variables.<ref>{{Cite book|title = Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes|last1 = Janicki |first1 = Aleksander | publisher = CRC Press| year = 1994|isbn = 9780824788827 | url = https://www.crcpress.com/Simulation-and-Chaotic-Behavior-of-Alpha-stable-Stochastic-Processes/Janicki-Weron/9780824788827 | last2 = Weron | first2 = Aleksander}}</ref> While other approaches have been proposed in the literature, including application of Bergström<ref>{{Cite journal|title = Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes|journal = Physical Review E|date = 1994|pages = 4677–4683| volume = 49|issue = 5| doi = 10.1103/PhysRevE.49.4677| first = Rosario Nunzio |last = Mantegna | pmid = 9961762| bibcode = 1994PhRvE..49.4677M}}</ref> and LePage<ref>{{Cite journal|title = Computer investigation of the Rate of Convergence of Lepage Type Series to α-Stable Random Variables|journal = Statistics| date = 1992|issn = 0233-1888| pages = 365–373|volume = 23|issue = 4|doi = 10.1080/02331889208802383|first1 = Aleksander|last1 = Janicki|first2 = Piotr| last2 = Kokoszka}}</ref> series expansions, the CMS method is regarded as the fastest and the most accurate.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)