Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tidal disruption radius == A star can be tidally torn by a heavier black hole when coming within the so-called Hill's radius of the black hole, inside which a star's surface gravity yields to the tidal force from the black hole,<ref name="Galaxy Dynamics">{{cite web |last1=Binney |first1=James |title=Galaxy Dynamics |url=https://cds.cern.ch/record/1371794/files/9780691130279_TOC.pdf |publisher=Princeton University Press |access-date=4 January 2022}}</ref> i.e., <math display="block"> (1-1.5) \ge Q^\text{tide} \equiv { G M_\odot /R_\odot^2 \over [G M_\bullet/s^2_\text{Hill} - G M_\bullet/(s_\text{Hill}+R_\odot)^2] }, ~~~ s_\text{Hill} \rightarrow R_\odot \left({ (2-3) GM_\bullet \over GM_\odot}\right)^{1 \over 3}, </math> For typical black holes of <math> M_\bullet = (10^0-10^{8.5}) M_\odot</math> the destruction radius <math display="block"> \max[s_\text{Hill}, s_\text{Loss}] = 400R_\odot \max\left[\left({M_\bullet \over 3 \times 10^7 M_\odot}\right)^{1/3}, {M_\bullet \over 3 \times 10^7 M_\odot}\right] = (1-4000) R_\odot \ll 0.001 \mathrm{pc},</math> where 0.001pc is the stellar spacing in the densest stellar systems (e.g., the nuclear star cluster in the Milky Way centre). Hence (main sequence) stars are generally too compact internally and too far apart spaced to be disrupted by even the strongest black hole tides in galaxy or cluster environment.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)