Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stirling number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Stirling numbers with negative integral values== The Stirling numbers can be extended to negative integral values, but not all authors do so in the same way.<ref name="Loeb">{{cite journal |last1=Loeb |first1=Daniel E.|orig-year=Received 3 Nov 1989|title=A generalization of the Stirling numbers |journal=Discrete Mathematics |volume=103 |issue= 3|pages=259β269 |doi= 10.1016/0012-365X(92)90318-A|year=1992 |doi-access=free }}</ref><ref name=":0">{{cite web |url=http://www.fq.math.ca/Scanned/34-3/branson.pdf |archive-url=https://web.archive.org/web/20110827132927/http://www.fq.math.ca/Scanned/34-3/branson.pdf |archive-date=2011-08-27 |url-status=live |title=An extension of Stirling numbers |last=Branson |first=David |date=August 1994 |website=The Fibonacci Quarterly |access-date=Dec 6, 2017 }}</ref><ref name=":1">D.E. Knuth, 1992.</ref> Regardless of the approach taken, it is worth noting that Stirling numbers of first and second kind are connected by the relations: : <math>\biggl[{n \atop k}\biggr] = \biggl\{{\!-k\! \atop \!-n\!}\biggr\} \quad \text{and} \quad \biggl\{{\!n\! \atop \!k\!}\biggr\} = \biggl[{-k \atop -n}\biggr]</math> when ''n'' and ''k'' are nonnegative integers. So we have the following table for <math>\left[{-n \atop -k}\right]</math>: {| cellspacing="0" cellpadding="5" style="text-align:right;" class="wikitable" |- | {{diagonal split header|''n''|''k''}} ! {{rh|align=right}} | β1 ! {{rh|align=right}} | β2 ! {{rh|align=right}} | β3 ! {{rh|align=right}} | β4 ! {{rh|align=right}} | β5 |- ! {{rh|align=right}} | β1 | 1 | 1 | 1 | 1 | 1 |- ! {{rh|align=right}} | β2 | 0 | 1 | 3 | 7 | 15 |- ! {{rh|align=right}} | β3 | 0 | 0 | 1 | 6 | 25 |- ! {{rh|align=right}} | β4 | 0 | 0 | 0 | 1 | 10 |- ! {{rh|align=right}} | β5 | 0 | 0 | 0 | 0 | 1 |} Donald Knuth<ref name=":1" /> defined the more general Stirling numbers by extending a [[Stirling numbers of the second kind#Recurrence relation|recurrence relation]] to all integers. In this approach, <math display=inline> \left[{n \atop k}\right]</math> and <math display=inline>\left\{{\!n\! \atop \!k\!}\right\}</math> are zero if ''n'' is negative and ''k'' is nonnegative, or if ''n'' is nonnegative and ''k'' is negative, and so we have, for ''any'' integers ''n'' and ''k'', : <math>\biggl[{n \atop k}\biggr] = \biggl\{{\!-k\! \atop \!-n\!}\biggr\} \quad \text{and} \quad \biggl\{{\!n\! \atop \!k\!}\biggr\} = \biggl[{-k \atop -n}\biggr].</math> On the other hand, for positive integers ''n'' and ''k'', David Branson<ref name=":0" /> defined <math display=inline> \left[{-n \atop -k}\right]\!,</math> <math display=inline>\left\{{\!-n\! \atop \!-k\!}\right\}\!,</math> <math display=inline> \left[{-n \atop k}\right]\!,</math> and <math display=inline>\left\{{\!-n\! \atop \!k\!}\right\}</math> (but not <math display=inline> \left[{n \atop -k}\right]</math> or <math display=inline>\left\{{\!n\! \atop \!-k\!}\right\}</math>). In this approach, one has the following extension of the [[Stirling numbers of the second kind#Recurrence relation|recurrence relation]] of the Stirling numbers of the first kind: :<math> \biggl[{-n \atop k}\biggr] = \frac{(-1)^{n+1}}{n!}\sum_{i=1}^{n}\frac{(-1)^{i+1}}{i^k} \binom ni </math>, For example, <math display=inline>\left[{-5 \atop k}\right] = \frac1{120}\Bigl(5-\frac{10}{2^k}+\frac{10}{3^k}-\frac 5{4^k}+\frac 1{5^k}\Bigr).</math> This leads to the following table of values of <math display=inline>\left[{n \atop k}\right]</math> for negative integral ''n''. {| cellspacing="0" cellpadding="5" style="text-align:center;" class="wikitable" |- | {{diagonal split header|''n''|''k''}} ! 0 ! 1 ! 2 ! 3 ! 4 |- ! β1 | 1 | 1 | 1 | 1 | 1 |- ! β2 | {{sfrac|{{val|-1}}|{{val|2}}}} | {{sfrac|{{val|-3}}|{{val|4}}}} | {{sfrac|{{val|-7}}|{{val|8}}}} | {{sfrac|{{val|-15}}|{{val|16}}}} | {{sfrac|{{val|-31}}|{{val|32}}}} |- ! β3 | {{sfrac|{{val|1}}|{{val|6}}}} | {{sfrac|{{val|11}}|{{val|36}}}} | {{sfrac|{{val|85}}|{{val|216}}}} | {{sfrac|{{val|575}}|{{val|1296}}}} | {{sfrac|{{val|3661}}|{{val|7776}}}} |- ! β4 | {{sfrac|{{val|-1}}|{{val|24}}}} | {{sfrac|{{val|-25}}|{{val|288}}}} | {{sfrac|{{val|-415}}|{{val|3456}}}} | {{sfrac|{{val|-5845}}|{{val|41472}}}} | {{sfrac|{{val|-76111}}|{{val|497664}}}} |- ! β5 | {{sfrac|{{val|1}}|{{val|120}}}} | {{sfrac|{{val|137}}|{{val|7200}}}} | {{sfrac|{{val|12019}}|{{val|432000}}}} | {{sfrac|{{val|874853}}|{{val|25920000}}}} | {{sfrac|{{val|58067611}}|{{val|1555200000}}}} |} In this case <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop -k}\right]=B_{k} </math> where <math>B_{k}</math> is a [[Bell number]], and so one may define the negative Bell numbers by <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop k}\right]=:B_{-k}</math>. For example, this produces <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop 1}\right]=B_{-1}=\frac 1e\sum_{j=1}^\infty\frac1{j\cdot j!}=\frac 1e\int_0^1\frac{e^t-1}{t}dt=0.4848291\dots</math>, generally <math display=inline>B_{-k}=\frac 1e\sum_{j=1}^\infty\frac1{j^kj!} </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)