Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Summation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Identities == The formulae below involve finite sums; for infinite summations or finite summations of expressions involving [[trigonometric function]]s or other [[transcendental function]]s, see [[list of mathematical series]]. === General identities === : <math>\sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) \quad</math> ([[distributivity]])<ref name="vpr">{{cite book | last1 = Varberg | first1 = Dale E. | last2 = Purcell | first2 = Edwin J. | last3 = Rigdon | first3 = Steven E. | title = Calculus | year = 2007 | publisher = [[Pearson Prentice Hall]] | edition = 9th | isbn = 978-0131469686 | page = 217 }}</ref> : <math>\sum_{n=s}^t f(n) \pm \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left(f(n) \pm g(n)\right)\quad</math> ([[commutativity]] and [[associativity]])<ref name="vpr"/> : <math>\sum_{n=s}^t f(n) = \sum_{n=s+p}^{t+p} f(n-p)\quad</math> (index shift) : <math>\sum_{n\in B} f(n) = \sum_{m\in A} f(\sigma(m)), \quad</math> for a [[bijection]] {{mvar|σ}} from a finite set {{mvar|A}} onto a set {{mvar|B}} (index change); this generalizes the preceding formula. : <math>\sum_{n=s}^t f(n) =\sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n)\quad</math> (splitting a sum, using [[associativity]]) : <math>\sum_{n=a}^{b}f(n)=\sum_{n=0}^{b}f(n)-\sum_{n=0}^{a-1}f(n)\quad</math> (a variant of the preceding formula) : <math>\sum_{n=s}^t f(n) = \sum_{n=0}^{t-s} f(t-n)\quad</math> (the sum from the first term up to the last is equal to the sum from the last down to the first) : <math>\sum_{n=0}^t f(n) = \sum_{n=0}^{t} f(t-n)\quad</math> (a particular case of the formula above) : <math>\sum_{i=k_0}^{k_1}\sum_{j=l_0}^{l_1} a_{i,j} = \sum_{j=l_0}^{l_1}\sum_{i=k_0}^{k_1} a_{i,j}\quad</math> (commutativity and associativity, again) : <math>\sum_{k\le j \le i\le n} a_{i,j} = \sum_{i=k}^n\sum_{j=k}^i a_{i,j} = \sum_{j=k}^n\sum_{i=j}^n a_{i,j} = \sum_{j=0}^{n-k}\sum_{i=k}^{n-j} a_{i+j,i}\quad</math> (another application of commutativity and associativity) : <math>\sum_{n=2s}^{2t+1} f(n) = \sum_{n=s}^t f(2n) + \sum_{n=s}^t f(2n+1)\quad</math> (splitting a sum into its [[parity (mathematics)|odd]] and [[parity (mathematics)|even]] parts, for even indexes) : <math>\sum_{n=2s+1}^{2t} f(n) = \sum_{n=s+1}^t f(2n) + \sum_{n=s+1}^t f(2n-1)\quad</math> (splitting a sum into its odd and even parts, for odd indexes) :<math>\biggl(\sum_{i=0}^{n} a_i\biggr) \biggl(\sum_{j=0}^{n} b_j\biggr)=\sum_{i=0}^n \sum_{j=0}^n a_ib_j \quad</math> ([[distributivity]]) : <math>\sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \biggl(\sum_{i=s}^m a_i\biggr) \biggl( \sum_{j=t}^n c_j \biggr)\quad</math> (distributivity allows factorization) : <math>\sum_{n=s}^t \log_b f(n) = \log_b \prod_{n=s}^t f(n)\quad</math> (the [[logarithm]] of a product is the sum of the logarithms of the factors) : <math>C^{\sum\limits_{n=s}^t f(n) } = \prod_{n=s}^t C^{f(n)}\quad</math> (the [[exponentiation|exponential]] of a sum is the product of the exponential of the summands) : <math>\sum^{k}_{m = 0}\sum^{m}_{n = 0}f(m,n)=\sum^{k}_{m = 0}\sum^{k}_{n = m}f(n,m),\quad</math>for any function <math display="inline">f</math> from <math display="inline">\mathbb{Z}\times\mathbb{Z}</math>. === Powers and logarithm of arithmetic progressions === : <math>\sum_{i=1}^n c = nc\quad</math> for every {{mvar|c}} that does not depend on {{mvar|i}} : <math>\sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2}\qquad</math> (Sum of the simplest [[arithmetic progression]], consisting of the first ''n'' natural numbers.){{r|CRC|p=52}} : <math>\sum_{i=1}^n (2i-1) = n^2\qquad</math> (Sum of first odd natural numbers) : <math>\sum_{i=0}^{n} 2i = n(n+1)\qquad</math> (Sum of first even natural numbers) : <math>\sum_{i=1}^{n} \log i = \log (n!)\qquad</math> (A sum of [[logarithm]]s is the logarithm of the product) : <math>\sum_{i=0}^n i^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}\qquad</math> (Sum of the first [[square number|squares]], see [[square pyramidal number]].) {{r|CRC|p=52}} : <math>\sum_{i=0}^n i^3 = \biggl(\sum_{i=0}^n i \biggr)^2 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}\qquad</math> ([[Nicomachus's theorem]]) {{r|CRC|p=52}} More generally, one has [[Faulhaber's formula]] for <math>p>1</math> : <math> \sum_{k=1}^n k^{p} = \frac{n^{p+1}}{p+1} + \frac{1}{2}n^p + \sum_{k=2}^p \binom p k \frac{B_k}{p-k+1}\,n^{p-k+1},</math> where <math>B_k</math> denotes a [[Bernoulli number]], and <math>\binom p k</math> is a [[binomial coefficient]]. === Summation index in exponents === In the following summations, {{mvar|a}} is assumed to be different from 1. : <math>\sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a}</math> (sum of a [[geometric progression]]) : <math>\sum_{i=0}^{n-1} \frac{1}{2^i} = 2-\frac{1}{2^{n-1}}</math> (special case for {{math|1=''a'' = 1/2}}) : <math>\sum_{i=0}^{n-1} i a^i =\frac{a-na^n+(n-1)a^{n+1}}{(1-a)^2}</math> ({{mvar|a}} times the derivative with respect to {{mvar|a}} of the geometric progression) : <math>\begin {align} \sum_{i= 0}^{n-1} \left(b + i d\right) a^i &= b \sum_{i= 0}^{n-1} a^i + d \sum_{i= 0}^{n-1} i a^i\\ & = b \left(\frac{1-a^n}{1-a}\right) + d \left(\frac{a-na^n+(n-1)a^{n+1}}{(1-a)^2}\right)\\ & = \frac{b(1-a^n) - (n - 1)d a^n}{1 - a}+\frac{da(1 - a^{n - 1})}{(1 - a)^2} \end {align}</math> :::(sum of an [[arithmetico–geometric sequence]]) === Binomial coefficients and factorials === {{Main|Binomial coefficient#Sums of the binomial coefficients}} There exist very many summation identities involving binomial coefficients (a whole chapter of ''[[Concrete Mathematics]]'' is devoted to just the basic techniques). Some of the most basic ones are the following. ====Involving the binomial theorem==== : <math>\sum_{i=0}^n {n \choose i}a^{n-i} b^i=(a + b)^n,</math> the [[binomial theorem]] : <math>\sum_{i=0}^n {n \choose i} = 2^n,</math> the special case where {{math|1=''a'' = ''b'' = 1}} : <math>\sum_{i=0}^n {n \choose i}p^i (1-p)^{n-i}=1</math>, the special case where {{math|1=''p'' = ''a'' = 1 − ''b''}}, which, for <math>0 \le p \le 1,</math> expresses the sum of the [[binomial distribution]] : <math>\sum_{i=0}^{n} i{n \choose i} = n(2^{n-1}),</math> the value at {{math|1=''a'' = ''b'' = 1}} of the [[derivative]] with respect to {{mvar|a}} of the binomial theorem : <math>\sum_{i=0}^n \frac{n \choose i}{i+1} = \frac{2^{n+1}-1}{n+1},</math> the value at {{math|1=''a'' = ''b'' = 1}} of the [[antiderivative]] with respect to {{mvar|a}} of the binomial theorem ==== Involving permutation numbers==== In the following summations, <math>{}_{n}P_{k}</math> is the number of [[k-permutation|{{math|''k''}}-permutations of {{math|''n''}}]]. : <math>\sum_{i=0}^{n} {}_{i}P_{k}{n \choose i} = {}_{n}P_{k}(2^{n-k})</math> : <math>\sum_{i=1}^n {}_{i+k}P_{k+1} = \sum_{i=1}^n \prod_{j=0}^k (i+j) = \frac{(n+k+1)!}{(n-1)!(k+2)}</math> : <math>\sum_{i=0}^{n} i!\cdot{n \choose i} = \sum_{i=0}^{n} {}_{n}P_{i} = \lfloor n! \cdot e \rfloor, \quad n \in \mathbb{Z}^+</math>, where and <math>\lfloor x\rfloor</math> denotes the [[floor function]]. ====Others==== : <math>\sum_{k=0}^{m} \binom{n+k}{n} = \binom{n+m+1}{n+1}</math> : <math>\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1}</math> : <math>\sum_{i=0}^n i\cdot i! = (n+1)! - 1</math> : <math>\sum_{i=0}^n {m+i-1 \choose i} = {m+n \choose n}</math> :<math>\sum_{i=0}^n {n \choose i}^2 = {2n \choose n}</math> :<math>\sum_{i=0}^n \frac{1}{i!} = \frac{\lfloor n!\; e \rfloor}{n!}</math> ===Harmonic numbers=== : <math>\sum_{i=1}^n \frac{1}{i} = H_n\quad</math> (the {{mvar|n}}th [[harmonic number]]) : <math>\sum_{i=1}^n \frac{1}{i^k} = H^k_n\quad</math> (a [[generalized harmonic number]])
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)