Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Symplectic manifold
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example: Cotangent bundle==== The cotangent bundle of a manifold is locally modeled on a space similar to the first example. It can be shown that we can glue these affine symplectic forms hence this bundle forms a symplectic manifold. A less trivial example of a Lagrangian submanifold is the zero section of the cotangent bundle of a manifold. For example, let :<math>X = \{(x,y) \in \R^2 : y^2 - x = 0\}.</math> Then, we can present <math>T^*X</math> as :<math>T^*X = \{(x,y,\mathrm{d}x,\mathrm{d}y) \in \R^4 : y^2 - x = 0, 2y\mathrm{d}y - \mathrm{d}x = 0\}</math> where we are treating the symbols <math>\mathrm{d}x,\mathrm{d}y</math> as coordinates of <math>\R^4 = T^*\R^2</math>. We can consider the subset where the coordinates <math>\mathrm{d}x=0</math> and <math>\mathrm{d}y=0</math>, giving us the zero section. This example can be repeated for any manifold defined by the vanishing locus of smooth functions <math>f_1,\dotsc,f_k</math> and their differentials <math>\mathrm{d}f_1,\dotsc,df_k</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)