Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Table of divisors
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 801 to 900 == {| class="wikitable" !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[801 (number)|801]] |1, 3, 9, 89, 267, 801 |6 |1170 |369 |deficient, composite |- ![[802 (number)|802]] |1, 2, 401, 802 |4 |1206 |404 |deficient, composite |- ![[803 (number)|803]] |1, 11, 73, 803 |4 |888 |85 |deficient, composite |- ![[804 (number)|804]] |1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 804 |12 |1904 |1100 |abundant, composite |- ![[805 (number)|805]] |1, 5, 7, 23, 35, 115, 161, 805 |8 |1152 |347 |deficient, composite |- ![[806 (number)|806]] |1, 2, 13, 26, 31, 62, 403, 806 |8 |1344 |538 |deficient, composite |- ![[807 (number)|807]] |1, 3, 269, 807 |4 |1080 |273 |deficient, composite |- ![[808 (number)|808]] |1, 2, 4, 8, 101, 202, 404, 808 |8 |1530 |722 |deficient, composite |- ![[809 (number)|809]] |1, 809 |2 |810 |1 |deficient, prime |- ![[810 (number)|810]] |1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810 |20 |2178 |1368 |abundant, composite |- ![[811 (number)|811]] |1, 811 |2 |812 |1 |deficient, prime |- ![[812 (number)|812]] |1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812 |12 |1680 |868 |abundant, composite |- ![[813 (number)|813]] |1, 3, 271, 813 |4 |1088 |275 |deficient, composite |- ![[814 (number)|814]] |1, 2, 11, 22, 37, 74, 407, 814 |8 |1368 |554 |deficient, composite |- ![[815 (number)|815]] |1, 5, 163, 815 |4 |984 |169 |deficient, composite |- ![[816 (number)|816]] |1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 816 |20 |2232 |1416 |abundant, composite |- ![[817 (number)|817]] |1, 19, 43, 817 |4 |880 |63 |deficient, composite |- ![[818 (number)|818]] |1, 2, 409, 818 |4 |1230 |412 |deficient, composite |- ![[819 (number)|819]] |1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819 |12 |1456 |637 |deficient, composite |- ![[820 (number)|820]] |1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820 |12 |1764 |944 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[821 (number)|821]] |1, 821 |2 |822 |1 |deficient, prime |- ![[822 (number)|822]] |1, 2, 3, 6, 137, 274, 411, 822 |8 |1656 |834 |abundant, composite |- ![[823 (number)|823]] |1, 823 |2 |824 |1 |deficient, prime |- ![[824 (number)|824]] |1, 2, 4, 8, 103, 206, 412, 824 |8 |1560 |736 |deficient, composite |- ![[825 (number)|825]] |1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825 |12 |1488 |663 |deficient, composite |- ![[826 (number)|826]] |1, 2, 7, 14, 59, 118, 413, 826 |8 |1440 |614 |deficient, composite |- ![[827 (number)|827]] |1, 827 |2 |828 |1 |deficient, prime |- ![[828 (number)|828]] |1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828 |18 |2184 |1356 |abundant, composite |- ![[829 (number)|829]] |1, 829 |2 |830 |1 |deficient, prime |- ![[830 (number)|830]] |1, 2, 5, 10, 83, 166, 415, 830 |8 |1512 |682 |deficient, composite |- ![[831 (number)|831]] |1, 3, 277, 831 |4 |1112 |281 |deficient, composite |- ![[832 (number)|832]] |1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832 |14 |1778 |946 |abundant, composite |- ![[833 (number)|833]] |1, 7, 17, 49, 119, 833 |6 |1026 |193 |deficient, composite |- ![[834 (number)|834]] |1, 2, 3, 6, 139, 278, 417, 834 |8 |1680 |846 |abundant, composite |- ![[835 (number)|835]] |1, 5, 167, 835 |4 |1008 |173 |deficient, composite |- ![[836 (number)|836]] |1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836 |12 |1680 |844 |abundant, composite, primitive abundant, weird |- ![[837 (number)|837]] |1, 3, 9, 27, 31, 93, 279, 837 |8 |1280 |443 |deficient, composite |- ![[838 (number)|838]] |1, 2, 419, 838 |4 |1260 |422 |deficient, composite |- ![[839 (number)|839]] |1, 839 |2 |840 |1 |deficient, prime |- ![[840 (number)|840]] |1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 |32 |2880 |2040 |abundant, highly abundant, composite, highly composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[841 (number)|841]] |1, 29, 841 |3 |871 |30 |deficient, composite |- ![[842 (number)|842]] |1, 2, 421, 842 |4 |1266 |424 |deficient, composite |- ![[843 (number)|843]] |1, 3, 281, 843 |4 |1128 |285 |deficient, composite |- ![[844 (number)|844]] |1, 2, 4, 211, 422, 844 |6 |1484 |640 |deficient, composite |- ![[845 (number)|845]] |1, 5, 13, 65, 169, 845 |6 |1098 |253 |deficient, composite |- ![[846 (number)|846]] |1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846 |12 |1872 |1026 |abundant, composite |- ![[847 (number)|847]] |1, 7, 11, 77, 121, 847 |6 |1064 |217 |deficient, composite |- ![[848 (number)|848]] |1, 2, 4, 8, 16, 53, 106, 212, 424, 848 |10 |1674 |826 |deficient, composite |- ![[849 (number)|849]] |1, 3, 283, 849 |4 |1136 |287 |deficient, composite |- ![[850 (number)|850]] |1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850 |12 |1674 |824 |deficient, composite |- ![[851 (number)|851]] |1, 23, 37, 851 |4 |912 |61 |deficient, composite |- ![[852 (number)|852]] |1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852 |12 |2016 |1164 |abundant, composite |- ![[853 (number)|853]] |1, 853 |2 |854 |1 |deficient, prime |- ![[854 (number)|854]] |1, 2, 7, 14, 61, 122, 427, 854 |8 |1488 |634 |deficient, composite |- ![[855 (number)|855]] |1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855 |12 |1560 |705 |deficient, composite |- ![[856 (number)|856]] |1, 2, 4, 8, 107, 214, 428, 856 |8 |1620 |764 |deficient, composite |- ![[857 (number)|857]] |1, 857 |2 |858 |1 |deficient, prime |- ![[858 (number)|858]] |1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858 |16 |2016 |1158 |abundant, composite |- ![[859 (number)|859]] |1, 859 |2 |860 |1 |deficient, prime |- ![[860 (number)|860]] |1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860 |12 |1848 |988 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[861 (number)|861]] |1, 3, 7, 21, 41, 123, 287, 861 |8 |1344 |483 |deficient, composite |- ![[862 (number)|862]] |1, 2, 431, 862 |4 |1296 |434 |deficient, composite |- ![[863 (number)|863]] |1, 863 |2 |864 |1 |deficient, prime |- ![[864 (number)|864]] |1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 864 |24 |2520 |1656 |abundant, composite |- ![[865 (number)|865]] |1, 5, 173, 865 |4 |1044 |179 |deficient, composite |- ![[866 (number)|866]] |1, 2, 433, 866 |4 |1302 |436 |deficient, composite |- ![[867 (number)|867]] |1, 3, 17, 51, 289, 867 |6 |1228 |361 |deficient, composite |- ![[868 (number)|868]] |1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868 |12 |1792 |924 |abundant, composite |- ![[869 (number)|869]] |1, 11, 79, 869 |4 |960 |91 |deficient, composite |- ![[870 (number)|870]] |1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 870 |16 |2160 |1290 |abundant, composite |- ![[871 (number)|871]] |1, 13, 67, 871 |4 |952 |81 |deficient, composite |- ![[872 (number)|872]] |1, 2, 4, 8, 109, 218, 436, 872 |8 |1650 |778 |deficient, composite |- ![[873 (number)|873]] |1, 3, 9, 97, 291, 873 |6 |1274 |401 |deficient, composite |- ![[874 (number)|874]] |1, 2, 19, 23, 38, 46, 437, 874 |8 |1440 |566 |deficient, composite |- ![[875 (number)|875]] |1, 5, 7, 25, 35, 125, 175, 875 |8 |1248 |373 |deficient, composite |- ![[876 (number)|876]] |1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 876 |12 |2072 |1196 |abundant, composite |- ![[877 (number)|877]] |1, 877 |2 |878 |1 |deficient, prime |- ![[878 (number)|878]] |1, 2, 439, 878 |4 |1320 |442 |deficient, composite |- ![[879 (number)|879]] |1, 3, 293, 879 |4 |1176 |297 |deficient, composite |- ![[880 (number)|880]] |1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880 |20 |2232 |1352 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[881 (number)|881]] |1, 881 |2 |882 |1 |deficient, prime |- ![[882 (number)|882]] |1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 882 |18 |2223 |1341 |abundant, composite |- ![[883 (number)|883]] |1, 883 |2 |884 |1 |deficient, prime |- ![[884 (number)|884]] |1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884 |12 |1764 |880 |deficient, composite |- ![[885 (number)|885]] |1, 3, 5, 15, 59, 177, 295, 885 |8 |1440 |555 |deficient, composite |- ![[886 (number)|886]] |1, 2, 443, 886 |4 |1332 |446 |deficient, composite |- ![[887 (number)|887]] |1, 887 |2 |888 |1 |deficient, prime |- ![[888 (number)|888]] |1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 888 |16 |2280 |1392 |abundant, composite |- ![[889 (number)|889]] |1, 7, 127, 889 |4 |1024 |135 |deficient, composite |- ![[890 (number)|890]] |1, 2, 5, 10, 89, 178, 445, 890 |8 |1620 |730 |deficient, composite |- ![[891 (number)|891]] |1, 3, 9, 11, 27, 33, 81, 99, 297, 891 |10 |1452 |561 |deficient, composite |- ![[892 (number)|892]] |1, 2, 4, 223, 446, 892 |6 |1568 |676 |deficient, composite |- ![[893 (number)|893]] |1, 19, 47, 893 |4 |960 |67 |deficient, composite |- ![[894 (number)|894]] |1, 2, 3, 6, 149, 298, 447, 894 |8 |1800 |906 |abundant, composite |- ![[895 (number)|895]] |1, 5, 179, 895 |4 |1080 |185 |deficient, composite |- ![[896 (number)|896]] |1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 896 |16 |2040 |1144 |abundant, composite |- ![[897 (number)|897]] |1, 3, 13, 23, 39, 69, 299, 897 |8 |1344 |447 |deficient, composite |- ![[898 (number)|898]] |1, 2, 449, 898 |4 |1350 |452 |deficient, composite |- ![[899 (number)|899]] |1, 29, 31, 899 |4 |960 |61 |deficient, composite |- ![[900 (number)|900]] |1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900 |27 |2821 |1921 |abundant, composite |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)