Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tensor product
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tensor product of linear maps == {{redirect|Tensor product of linear maps|the generalization for modules|Tensor product of modules#Tensor product of linear maps and a change of base ring}} Given a linear map {{tmath|1= f : U\to V }}, and a vector space {{mvar|W}}, the ''tensor product:'' : <math>f\otimes W : U\otimes W\to V\otimes W</math> is the unique linear map such that: : <math>(f\otimes W)(u\otimes w)=f(u)\otimes w.</math> The tensor product <math>W\otimes f</math> is defined similarly. Given two linear maps <math>f : U\to V</math> and {{tmath|1= g : W\to Z }}, their tensor product: : <math>f\otimes g : U\otimes W\to V\otimes Z</math> is the unique linear map that satisfies: : <math>(f\otimes g)(u\otimes w)=f(u)\otimes g(w).</math> One has: : <math>f\otimes g= (f\otimes Z)\circ (U\otimes g) = (V\otimes g)\circ (f\otimes W).</math> In terms of [[category theory]], this means that the tensor product is a [[bifunctor]] from the [[category (mathematics)|category]] of vector spaces to itself.<ref>{{cite book| last1=Hazewinkel|first1=Michiel|last2=Gubareni|first2=Nadezhda Mikhaĭlovna| last3=Gubareni|first3=Nadiya|last4=Kirichenko|first4=Vladimir V.|title=Algebras, rings and modules|page=100| publisher=Springer|year=2004|isbn=978-1-4020-2690-4}}</ref> If {{mvar|f}} and {{mvar|g}} are both [[injective]] or [[surjective]], then the same is true for all above defined linear maps. In particular, the tensor product with a vector space is an [[exact functor]]; this means that every [[exact sequence]] is mapped to an exact sequence ([[tensor product of modules|tensor products of modules]] do not transform injections into injections, but they are [[right exact functor]]s). By choosing bases of all vector spaces involved, the linear maps {{math|''f''}} and {{math|''g''}} can be represented by [[matrix (mathematics)|matrices]]. Then, depending on how the tensor <math>v \otimes w</math> is vectorized, the matrix describing the tensor product <math>f \otimes g</math> is the [[Kronecker product]] of the two matrices. For example, if {{math|''V'', ''X'', ''W''}}, and {{math|''U''}} above are all two-dimensional and bases have been fixed for all of them, and {{math|''f''}} and {{math|''g''}} are given by the matrices: <math display="block">A=\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{bmatrix}, \qquad B=\begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix},</math> respectively, then the tensor product of these two matrices is: <math> \begin{align} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{bmatrix} \otimes \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} &= \begin{bmatrix} a_{1,1} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} & a_{1,2} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} \\[3pt] a_{2,1} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} & a_{2,2} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} \\ \end{bmatrix} \\ &= \begin{bmatrix} a_{1,1} b_{1,1} & a_{1,1} b_{1,2} & a_{1,2} b_{1,1} & a_{1,2} b_{1,2} \\ a_{1,1} b_{2,1} & a_{1,1} b_{2,2} & a_{1,2} b_{2,1} & a_{1,2} b_{2,2} \\ a_{2,1} b_{1,1} & a_{2,1} b_{1,2} & a_{2,2} b_{1,1} & a_{2,2} b_{1,2} \\ a_{2,1} b_{2,1} & a_{2,1} b_{2,2} & a_{2,2} b_{2,1} & a_{2,2} b_{2,2} \\ \end{bmatrix}. \end{align} </math> The resultant rank is at most 4, and thus the resultant dimension is 4. {{em|rank}} here denotes the [[tensor rank]] i.e. the number of requisite indices (while the [[matrix rank]] counts the number of degrees of freedom in the resulting array). {{tmath|1= \operatorname{Tr} A \otimes B = \operatorname{Tr} A \times \operatorname{Tr} B }}. A [[dyadic product]] is the special case of the tensor product between two vectors of the same dimension.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)