Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Universal property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalent formulations=== The definition of a universal morphism can be rephrased in a variety of ways. Let <math>F: \mathcal{C} \to \mathcal{D}</math> be a functor and let <math>X</math> be an object of <math>\mathcal{D}</math>. Then the following statements are equivalent: * <math>(A, u)</math> is a universal morphism from <math>X</math> to <math>F</math> * <math>(A, u)</math> is an [[initial object]] of the [[comma category]] <math>(X \downarrow F)</math> * <math>(A, F(\bullet)\circ u)</math> is a [[representable functor|representation]] of <math>\text{Hom}_\mathcal{D}(X, F(-))</math>, where its components <math>(F(\bullet)\circ u)_B:\text{Hom}_{\mathcal{C}}(A, B) \to \text{Hom}_{\mathcal{D}}(X, F(B))</math> are defined by <math display="block">(F(\bullet)\circ u)_B(f:A\to B):X\to F(B) = F(f)\circ u:X\to F(B)</math> for each object <math>B</math> in <math>\mathcal{C}.</math> The dual statements are also equivalent: * <math>(A, u)</math> is a universal morphism from <math>F</math> to <math>X</math> * <math>(A, u)</math> is a [[terminal object]] of the comma category <math>(F \downarrow X)</math> * <math>(A, u\circ F(\bullet))</math> is a representation of <math>\text{Hom}_\mathcal{D}(F(-), X)</math>, where its components <math>(u\circ F(\bullet))_B:\text{Hom}_{\mathcal{C}}(B, A)\to \text{Hom}_{\mathcal{D}}(F(B), X)</math> are defined by <math display="block"> (u\circ F(\bullet))_B(f:B\to A):F(B)\to X = u\circ F(f):F(B)\to X</math> for each object <math>B</math> in <math>\mathcal{C}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)