Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Venturi effect
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Compensation for temperature, pressure, and mass === Fundamentally, pressure-based meters measure [[kinetic energy]] density. [[Bernoulli's equation]] (used above) relates this to [[mass density]] and volumetric flow: <math>\Delta P = \frac{1}{2} \rho (v_2^2 - v_1^2) = \frac{1}{2} \rho \left(\left(\frac{A_1}{A_2}\right)^2-1\right) v_1^2 = \frac{1}{2} \rho \left(\frac{1}{A_2^2}-\frac{1}{A_1^2}\right) Q^2 = k\, \rho\, Q^2</math> where constant terms are absorbed into ''k''. Using the definitions of density (<math>m=\rho V</math>), [[molar concentration]] (<math>n=C V</math>), and [[molar mass]] (<math>m=M n</math>), one can also derive mass flow or molar flow (i.e. standard volume flow): <math>\begin{align}\Delta P &= k\, \rho\, Q^2 \\ &= k \frac{1}{\rho}\, \dot{m}^2 \\ &= k \frac{\rho}{C^2}\, \dot{n}^2 = k \frac{M}{C}\, \dot{n}^2. \end{align}</math> However, measurements outside the design point must compensate for the effects of temperature, pressure, and molar mass on density and concentration. The [[ideal gas law]] is used to relate actual values to [[Standard state|design values]]: <math>C = \frac{P}{RT} = \frac{\left(\frac{P}{P^\ominus}\right)}{\left(\frac{T}{T^\ominus}\right)} C^\ominus</math> <math>\rho = \frac{MP}{RT} = \frac{\left(\frac{M}{M^\ominus} \frac{P}{P^\ominus}\right)}{\left(\frac{T}{T^\ominus}\right)} \rho^\ominus.</math> Substituting these two relations into the pressure-flow equations above yields the fully compensated flows: <math>\begin{align}\Delta P &= k \frac{\left(\frac{M}{M^\ominus} \frac{P}{P^\ominus}\right)}{\left(\frac{T}{T^\ominus}\right)} \rho^\ominus\, Q^2 &= \Delta P_{\max} \frac{\left(\frac{M}{M^\ominus} \frac{P}{P^\ominus}\right)}{\left(\frac{T}{T^\ominus}\right)} \left(\frac Q{Q_{\max}}\right)^2\\ &= k \frac{\left(\frac{T}{T^\ominus}\right)}{\left(\frac{M}{M^\ominus} \frac{P}{P^\ominus}\right) \rho^\ominus} \dot{m}^2 &= \Delta P_{\max} \frac{\left(\frac{T}{T^\ominus}\right)}{\left(\frac{M}{M^\ominus} \frac{P}{P^\ominus}\right)} \left(\frac{\dot{m}}{\dot{m}_{\max}}\right)^2\\ &= k \frac{M \left(\frac{T}{T^\ominus}\right)}{\left(\frac{P}{P^\ominus}\right) C^\ominus} \dot{n}^2 &= \Delta P_{\max} \frac{\left(\frac{M}{M^\ominus}\frac{T}{T^\ominus}\right)}{\left(\frac{P}{P^\ominus}\right)} \left(\frac{\dot{n}}{\dot{n}_{\max}}\right)^2. \end{align}</math> ''Q'', ''m'', or ''n'' are easily isolated by dividing and taking the [[square root]]. Note that pressure-, temperature-, and mass-compensation is required for every flow, regardless of the end units or dimensions. Also we see the relations: <math>\begin{align}\frac{k}{\Delta P_{\max}} &= \frac{1}{\rho^\ominus Q_{\max}^2}\\ &= \frac{\rho^\ominus}{\dot{m}_{\max}^2}\\ &= \frac{{C^\ominus}^2}{\rho^\ominus\dot{n}_{\max}^2} = \frac{C^\ominus}{M^\ominus\dot{n}_{\max}^2}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)